

Filtragem no Domínio da Freqüência Transformada de Fourier

Adair Santa Catarina Curso de Ciência da Computação Unioeste – Campus de Cascavel – PR

Agosto/2023

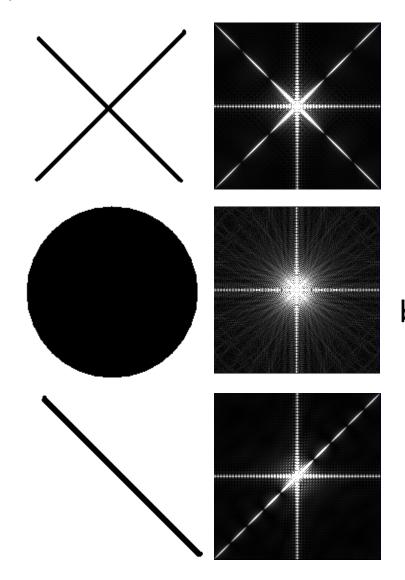
Material de referência: Conci, A; Azevedo, E.; Leta, F. R. **Computação gráfica**: teoria e prática, v. 2. Rio de Janeiro : Elsevier, 2008.

Filtragem no Domínio da Freqüência

- 1- A imagem é transformada do domínio espacial para o da freqüência (transformada de Fourier).
- 2- Operações de filtragem são realizadas nessa imagem.
- 3- Realiza-se o processo inverso, onde a imagem no domínio da freqüência é transformada para o domínio espacial.

Esquema de processamento no domínio da frequência usando a transformada de imagens

Transformada de Fourier



Algumas imagens representadas como funções bidimensionais e seus espectros de Fourier.

Transformada de Fourier Unidimensional

A transformada de Fourier de uma função contínua *f(x)* de uma variável real *x* pode ser definida como:

$$F(u) = \int_{-\infty}^{\infty} f(x) \exp[-j2\pi ux] dx \text{ onde } j = \sqrt{-1}$$

A partir de F(u), pode-se obter f(x) através da transformada inversa de Fourier:

$$f(x) = \int_{-\infty}^{\infty} F(u) \exp[j2\pi ux] du$$

Essas duas equações são chamadas de par de transformada de Fourier e podem existir se forem integráveis e se f(x) for contínua.

Transformada de Fourier Unidimensional

A transformada de Fourier de uma função é uma função complexa:

$$F(u) = R(u) + jI(u)$$

que pode ser escrita na forma exponencial:

$$F(u) = |F(u)|e^{j\theta(u)}$$

onde:

$$|F(u)| = [R^2(u) + I^2(u)]^{1/2}$$
 \Rightarrow Espectro de Fourier $\phi(u) = \tan^{-1}[I(u)/R(u)]$ \Rightarrow Ângulo de fase $P(u) = R^2(u) + I^2(u)$ \Rightarrow Espectro da potência²

Transformada de Fourier Bidimensional

Transformada de Fourier para uma função bidimensional:

$$F(u,v) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \exp[-j2\pi(ux+vy)] dxdy$$

Transformada inversa:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) \exp[j2\pi(ux+vy)] dudv$$

$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2} \rightarrow \text{Espectro de Fourier}$$

$$\phi(u,v) = \tan^{-1}[I(u,v)/R(u,v)] \rightarrow \text{ Ângulo de fase}$$

$$P(u,v) = R^2(u,v) + I^2(u,v)$$
 \rightarrow Espectro da potência²

Transformada de Fourier Discreta

Transformada de Fourier para uma imagem discreta:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \exp \left[-j2\pi \left(\frac{ux}{M} + \frac{vy}{N} \right) \right]$$

para u = (0, 1, 2, ..., M - 1) e v = (0, 1, 2, ..., N - 1)

Transformada inversa:

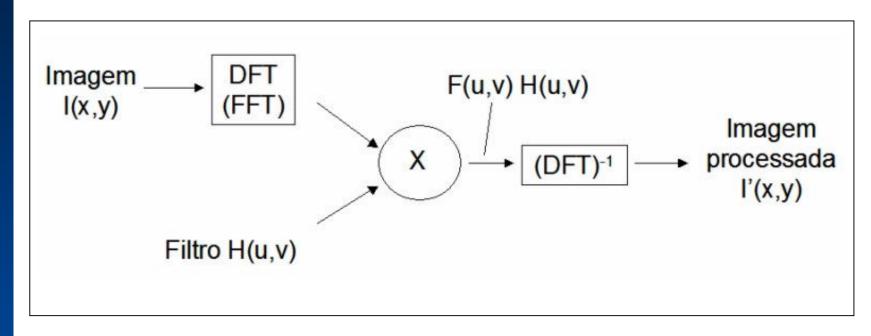
$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \exp\left[j2\pi \left(\frac{ux}{M} + \frac{uy}{N}\right)\right]$$

para x = (0, 1, 2, ..., M - 1) e y = (0, 1, 2, ..., N - 1), onde $\Delta u = 1/(M.\Delta x)$ e $\Delta v = 1/(N.\Delta y)$

Processamento de Imagens no Domínio de Fourier

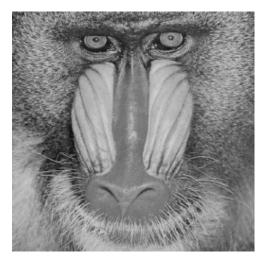
- 1- A imagem I(x,y) é transformada para o domínio de Fourier (transformada discreta).
- 2- A imagem no domínio de Fourier é representada por F(u,v) e é convoluída com o filtro H(u,v).
- 3- Ao produto F(u,v)H(u,v) é aplicada a inversa da transformada de Fourier para retornar ao **domínio espacial**, onde se tem a imagem processada I'(x,y).

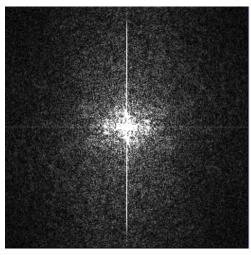
Processamento de Imagens no Domínio de Fourier

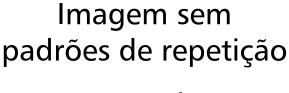


Esquema ilustrando os passos da filtragem no domínio de Fourier

O Espectro de Fourier







Espectro bem distribuído

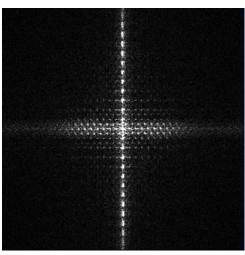
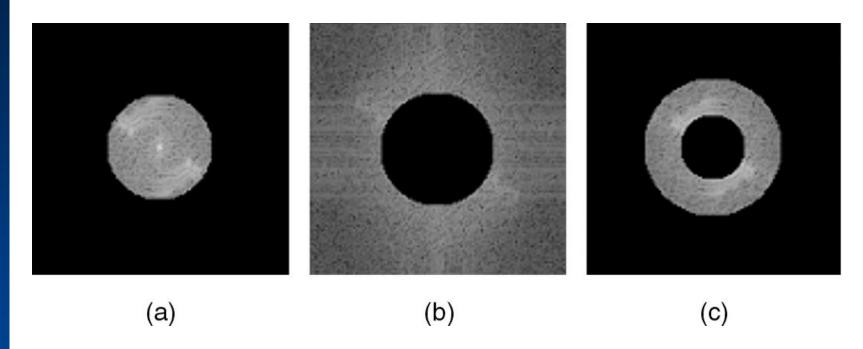


Imagem com linhas e colunas repetidas

Comportamento visível no espectro de Fourier

Tipos de Filtros

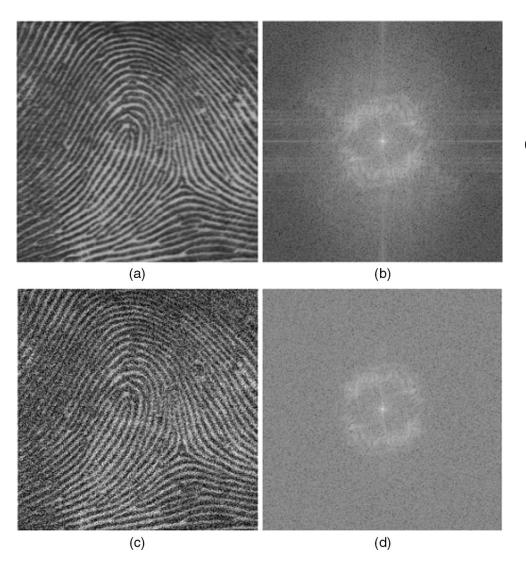


(a) Filtro passa-baixa (b) Filtro passa-alta (c) Filtro passa-banda

Filtragem Passa-baixa

- São os detalhes da imagem que geram altas frequências. Por exemplo as bordas, lados e outras transições abruptas de nível de cinza;
- Utilizando um filtro passa baixa obtém-se uma imagem menos nítida ou suavizada;
- Tem-se uma perda de detalhes que são os componentes de altas freqüências.

Filtragem Passa-baixa



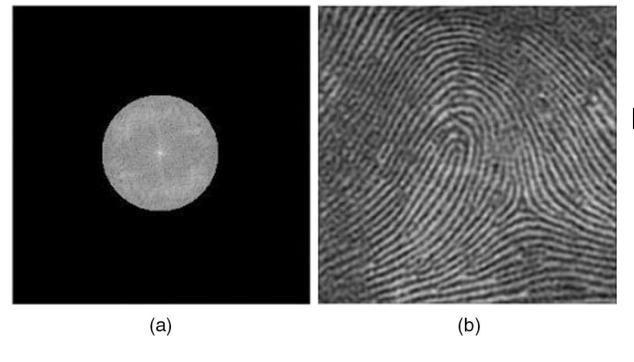
Comparação do espectro de Fourier de imagens de impressão digital

- (a) (b) sem ruído
- (c) (d) com ruído

Filtro Passa-baixa Ideal

$$H(u,v) = 1 \text{ se } u^2 + v^2 < r^2$$

$$H(u,v) = 0 \text{ se } u^2 + v^2 \ge r^2$$



Resultado da filtragem passa-baixa

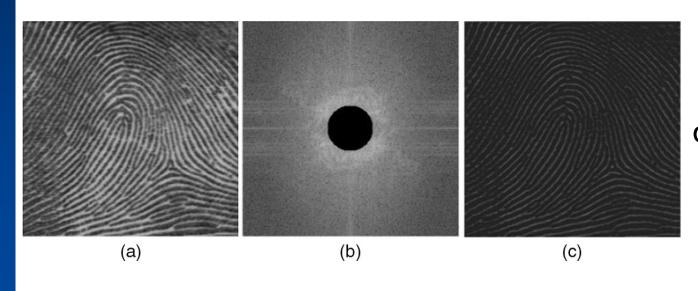
Filtragem Passa-alta

- Na filtragem passa-alta, os componentes de alta frequência da transformada de Fourier não são alterados, enquanto os de baixa frequência são removidos;
- Isto faz com que os detalhes finos da imagem sejam enfatizados.

Filtro Passa-alta Ideal

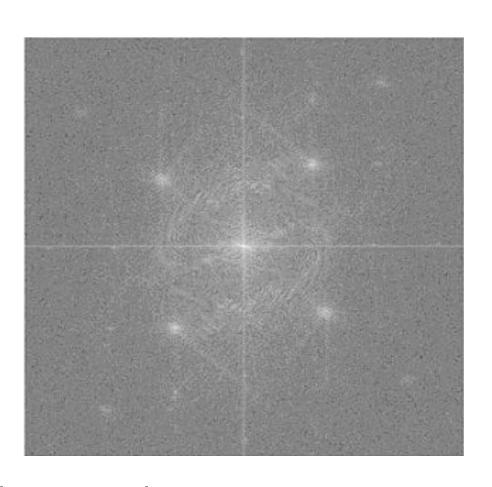
$$H(u,v) = 0 \text{ se } u^2 + v^2 < r^2$$

$$H(u,v) = 1 \text{ se } u^2 + v^2 \ge r^2$$



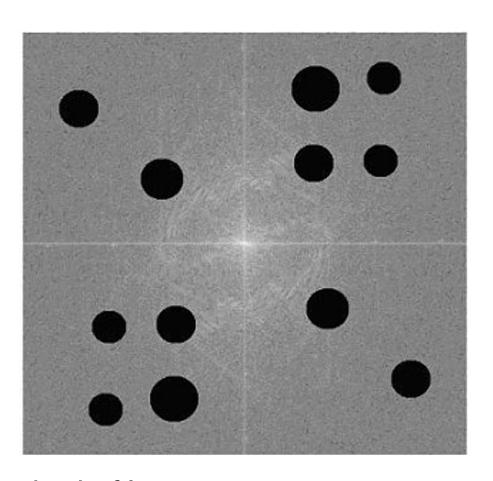
Resultado da filtragem passa-alta

Filtro Circular Não Centrado na Origem



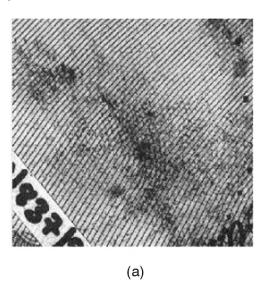
Espectro de Fourier da Imagem

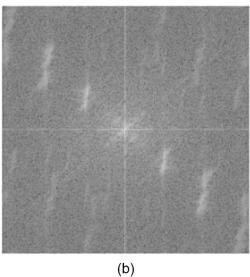
Filtro Circular Não Centrado na Origem



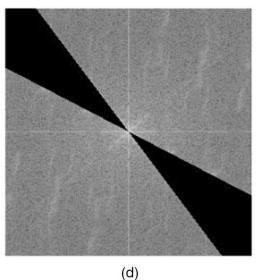
Resultado da filtragem

Filtro Setor Angular





Espectro de Fourier da Imagem



Resultado da filtragem

Implementação Computacional da FFT

Press, William H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. **Numerical Recipes**: The art of scientific computing. 3. ed. Cambridge University Press: Cambridge, 2007.

Disponível em: http://www.nr.com/