Compressão com perdas

Alunos:

Carlos E. de Souza Giovani Dal Piva Ulisses Constantini

No que consiste?

- Baseia-se no conceito de comprometimento
 - A distorção pode ser tolerada?
 - Dependendo da situação, se suficientemente parecida sim.
- Aumento na compressão bastante significativo.
 - De 3:1 até razões maiores que 100:1
- Utilizado principalmente para comprimir:
 - Vídeo;
 - Audio;
 - Imagem.

No que consiste?

Pode levar à perda generativa (generation loss)

 Diferencia-se da compressão sem perdas pelo fato da presença do bloco quantizador

Métodos de compressão com perda de dados

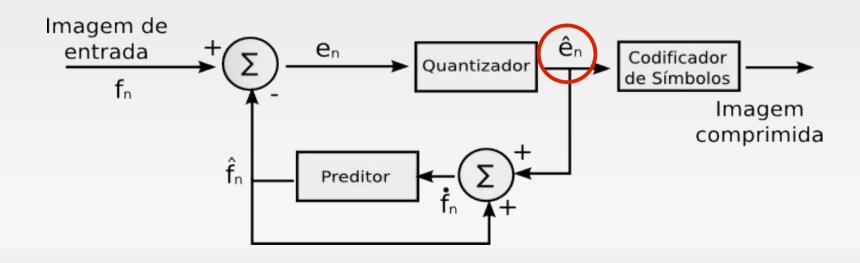
Imagens fixas

- Fractal compression
- JPEG e JPEG 2000 (sucessor do JPEG)
- Wavelet compression
- Cartesian Perceptual Compression (CPC)
- DjVu

Filmes/animações

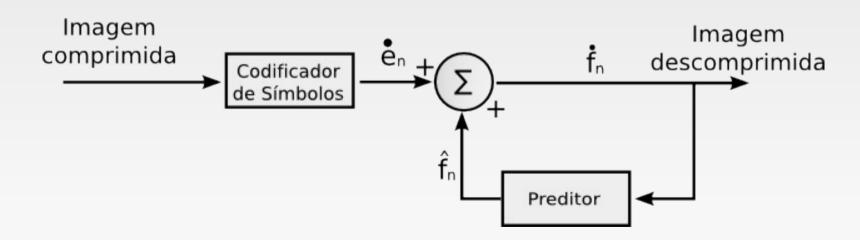
- Flash
- H.261
- H.263
- H.264/MPEG-4 AVC
- MNG (suporta JPEG sprites)
- Motion JPEG
- MPEG-1 Part 2, MPEG-2 Part 2 e MPEG-4 Part 2
- Ogg Theora (sem restrições de patentes)
- Sorenson video codec
- VC-1

Música

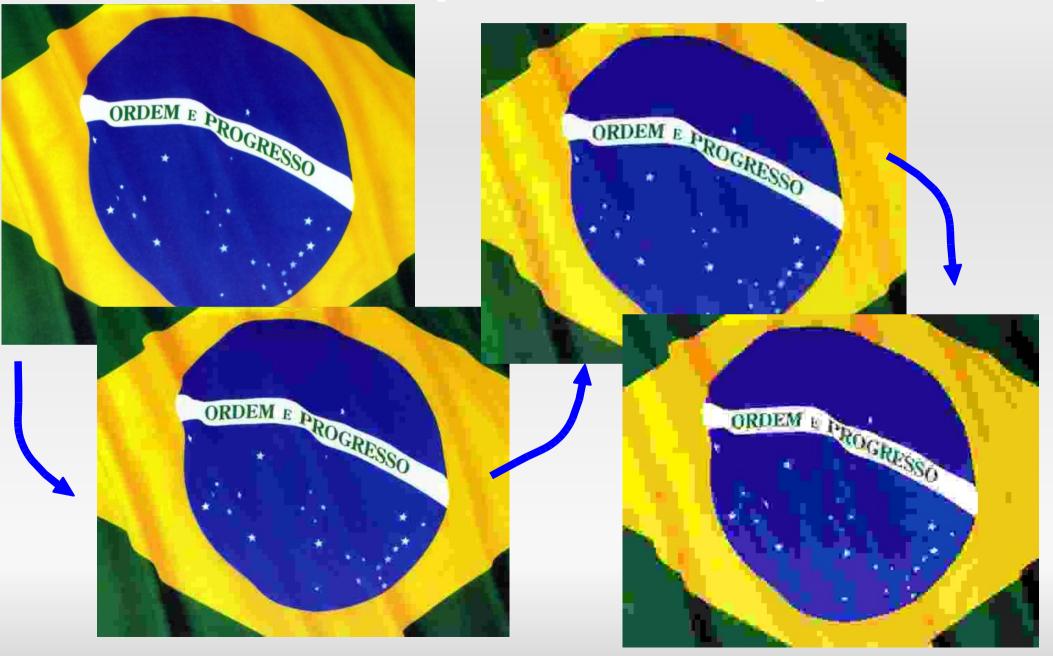

- AAC utilizado pela Apple Computer
- ADPCM
- ATRAC
- Dolby AC-3
- DTS
- MP2
- MP3
- Musepack
- Ogg Vorbis (sem restrições de patentes)
- Windows Media Audio (WMA)- criado pela Microsoft

Voz

- CELP
- G.711
- G.726
- HILN
- Adaptive Multi-Rate (AMR) (used by GSM cell carriers, such as T-Mobile)
- Speex (sem restrições de patentes)


Codificação Preditiva com perdas

- Presença do Quantizador na compactação;
- Mapeia o erro em uma faixa limitada (ê_n), a qual estabelece o nível de compressão.



Decodificação Preditiva

- Sem quantizador
- Informação é então perdida

Exemplo compressão com perda

- É um exemplo de Codificação Preditiva com Perdas;
- Quantifica o sinal diferença entre amostras consecutivas com um quantificador codificado com 1 bit por amostra.

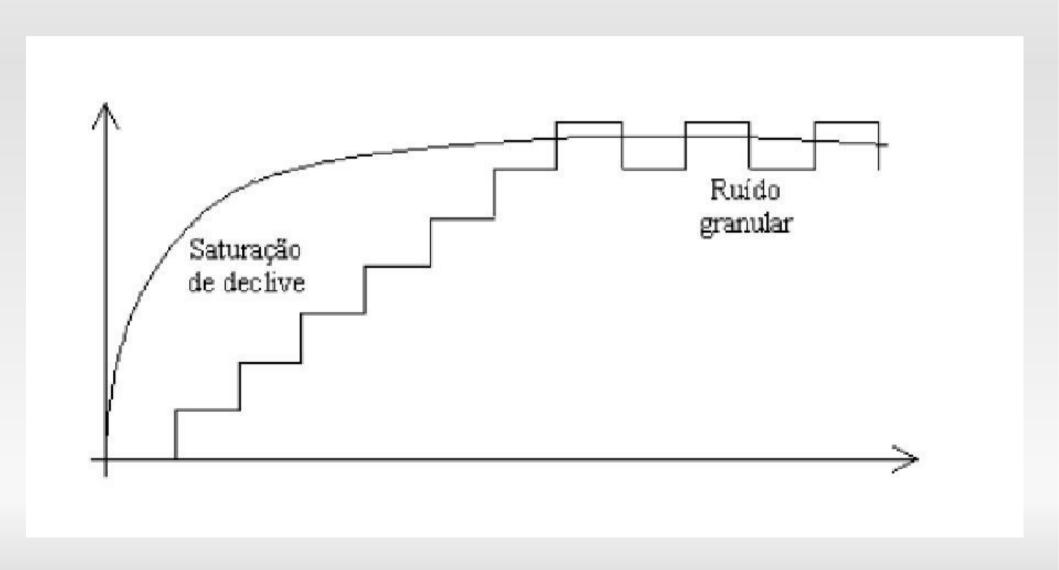
•
$$f_0 = f_0$$

•
$$f_{n}^{n} = \alpha * f_{n-1}^{n}$$

•
$$e_n = f_n - f_{n-1}^{\circ}$$

•
$$e_n^\circ = +\zeta$$
 para $e_n > 0$; senão $-\zeta$

•
$$f_n^\circ = e_n^\circ + f_n^\circ$$


Onde α = coeficiente de predição; ζ = constante positiva

Ex.: Modulação Delta

Entrada		Codificador				Decodificador		Erro
n	f	f^	e	ê	f	f^	f	[f f]
0	14	-	_	-	14,0	_	14,0	0,0
1	15	14	1,0	6,5	20,5	14,0	20,5	-5,5
2	14	20,5	-6,5	-6,5	14,0	20,5	14,0	0,0
3	15	14,0	1,0	6,5	20,5	14,0	20,5	-5,5
4	13	20,5	-7,5	-6,5	14,0	20,5	14,0	-1,0
5	15	14,0	1,0	6,5	20,5	14,0	20,5	-5,5
6	15	7,5	-5,5	-6,5	14,0	20,5	14,0	1,0
7	14	14,0	0,0	-6,5	7,5	14,0	7,5	6,5
8	20	20,5	12,5	6,5	14,0	7,5	14,0	6,0
9	26	27,0	12,0	6,5	20,5	14,0	20,5	5,5
10	27	33,5	6,5	6,5	27,0	20,5	27,0	6,5

Produz dois tipos de distorção:

- saturação de declive (slope overload)
 característica das zonas de transição brusca do sinal, em que o passo Δ do quantificador não é suficiente para o acompanhar;
- e o ruído granular típico das zonas de silêncio ou de pequena variação do sinal de entrada quando comparado com o passo Δ do quantificador.

