UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ – UNIOESTE CAMPUS UNIVERSITÁRIO DE CASCAVEL CURSO DE CIÊNCIA DA COMPUTAÇÃO

Disciplina: Processamento de Imagens Digitais

Profº: Adair Santa Catarina

LISTA DE EXERCÍCIOS

- 1 Dados os bytes iniciais de um arquivo BMP, responda:
- a) Quais as dimensões desta imagem?
- b) Qual o formato do pixel da imagem?
- c) Quantos bytes tem o arquivo?

00000000:	42	4D	36	80	64	00	00	00	00	00	36	00	99	00	28	00
00000010:	00	00	80	01	00	00	00	01	00	00	01	00	18	00	00	00
00000020:	00	00	00	80	04	00	00	00	00	00	00	00	00	00	00	00
00000030:	00	00	00	00	00	00	ØE	34	14	ØE	34	14	0D	36	15	ØD
00000040:	36	15	OC	34	14	OC	34	14	ØD	36	15	ØD	36	15	ØD	37
00000050:	13	ØE	37	17	OC	34	14	OC	34	14	0F	3A	19	ØD	39	18
00000060:	ØD	39	18	ØD	39	18	ØF	3A	19	10	39	18	12	30	19	11
00000070:	3A	19	ØF	3A	19	0F	3A	19	0F	3B	18	0F	3B	18	OC	39
00000080:	15	ØF	3B	18	ØF	3B	18	ØF	3B	18	10	3D	19	10	30	1B
00000090:	10	3C	1B	11	3D	1C	0F	3E	1A	12	41	1D	11	43	1E	11
000000A0:	43	1E	11	43	1E	13	43	22	12	45	23	13	47	24	13	47
000000B0:	24	13	46	26	ØF	45	25	11	46	26	11	47	24	11	47	24
000000000:	10	49	26	10	49	26	11	4A	27	13	4B	28	13	4B	28	13

- 2 Dado a distribuição de intensidades de uma imagem em 16 tons de cinza, faça:
- a) O processo de autoescala, apresentando o novo histograma.
- b) A equalização da imagem, mostrando o histograma da imagem equalizada.

Tom	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	0	40	60	70	90	120	150	130	80	50	40	30	30	20	0	0

3 – Considerando a distribuição das intensidades da imagem anterior, aplique o processo de especificação direta para o histograma cuja distribuição de intensidades é apresentada abaixo.

Tom	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	30	50	70	90	100	60	30	0	0	0	20	50	100	80	50	20

- 4 Uma transformação de histograma do tipo g(x,y) = 1,3.f(x,y) + 40 gera quais efeitos?
- 5 Caso se queira reduzir o contraste de uma imagem, sem alterar seu brilho médio, qual transformação de histograma pode-se utilizar?

6 – Observe as imagens a seguir. A imagem (a) e a imagem (b) foram operadas logicamente; obteve-se como resultado desta operação lógica a imagem (c). Qual a operação lógica realizada com as imagens (a) e (b)?

- 7 Diferencie operações pixel-a-pixel e operações orientadas a vizinhança.
- 8 Transformação projetiva é um modelo de transformação geométrica de imagens digitais. Qual sua aplicabilidade no processamento de imagens?
- 9 Que tipos de transformações geométricas são representáveis em uma transformação projetiva?

10 – Dada a tabela de mapeamento abaixo, encontre as equações da transformação projetiva que implementa o mapeamento proposto.

Ponto de	Coordenadas originais	Coordenadas após warping
controle	(X, Y)	(X´, Y´)
1	(0, 0)	(5, 10)
2	(40, 30)	(35, 50)
3	(40, 0)	(50, 10)
4	(0, 30)	(5, 45)

- 11 O que é redundância de dados e como podemos medi-la?
- 12 Quais os tipos de redundância presentes em imagens e que podemos explorar para comprimi-las?
- 13 Quais algoritmos são adequados para explorar a redundância de codificação?
- 14 Quais algoritmos são adequados para explorar a redundância interpixel?
- 15 Quais algoritmos são adequados para explorar a redundância psicovisual?
- 16 Qual a estrutura tradicional de um codificador/decodificar fonte sem perdas e comperdas?
- 17 Qual o função de um codificador/decodificador de canal?

- 18 Cite e explique, brevemente, três métodos empregados em compressão sem perdas.
- 19 Como se resolve o problema de precisão do método de codificação aritmética?
- 20 Explique o método de compressão preditiva sem perdas?
- 21 O método de compressão preditiva sem perdas sempre conseguirá reduzir a quantidade de bytes para representar uma imagem?
- 22 Qual a principal diferença em um método de compressão preditiva sem perdas e com perdas?
- 23 Em que casos se utiliza Modulação Delta? Ela é um caso particular de qual método de codificação?
- 24 O DPCM está sempre associado à quantização? Ou é possível termos DPCM lossless?
- 25 Como estruturar a quantização para garantir que DPCM produza, de fato, alguma compressão em imagens?
- 26 As codificações que utilizam transformadas exploram qual tipo de redundância?
- 27 Por que a DCT (*Discrete Cosine Transform*) contribui para obtenção de altas taxas de compressão?
- 28 Explique quais processos empregados no padrão JPEG resultam redução na quantidade de bytes para codificar uma imagem.
- 29 Por que o padrão JPEG faz uma transformação no sistema de cores da imagem a ser comprimida?
- 30 O downsampling resulta em compressão da imagem? Que tipo de informação é descartada? Qual redundância é explorada nesta etapa?
- 31 Qual o papel da matriz de quantização no padrão JPEG?
- 32 O padrão JPEG permite configurar o nível de compressão, comprimindo mais ou menos a imagem. Como isto é possível?
- 33 Por que se usa RLE no padrão JPEG? E porque se usa Huffman?