13.4 Deletion 323

13.4 Deletion

Like the other basic operations on an n-node red-black tree, deletion of a node takes
time O(lgn). Deleting a node from a red-black tree is a bit more complicated than
inserting a node.

The procedure for deleting a node from a red-black tree is based on the TREE-
DELETE procedure (Section 12.3). First, we need to customize the TRANSPLANT
subroutine that TREE-DELETE calls so that it applies to a red-black tree:

RB-TRANSPLANT(T, u, v)

1 ifu.p=="T.nil

2 T.root = v

3 elseif u == u.p.left
4 u.p.left =v
5 elseu.p.right = v
6 v.p=up

The procedure RB-TRANSPLANT differs from TRANSPLANT in two ways. First,
line 1 references the sentinel T.nil instead of NIL. Second, the assignment to v.p in
line 6 occurs unconditionally: we can assign to v.p even if v points to the sentinel.
In fact, we shall exploit the ability to assign to v.p when v = T.nil.

The procedure RB-DELETE is like the TREE-DELETE procedure, but with ad-
ditional lines of pseudocode. Some of the additional lines keep track of a node y
that might cause violations of the red-black properties. When we want to delete
node z and z has fewer than two children, then z is removed from the tree, and we
want y to be z. When z has two children, then y should be z’s successor, and y
moves into z’s position in the tree. We also remember y’s color before it is re-
moved from or moved within the tree, and we keep track of the node x that moves
into y’s original position in the tree, because node x might also cause violations
of the red-black properties. After deleting node z, RB-DELETE calls an auxiliary
procedure RB-DELETE-FIXUP, which changes colors and performs rotations to
restore the red-black properties.

324 Chapter 13 Red Black Trees

RB-DELETE(T, z)
1 y=z

2 y-original-color = y.color

3 ifz.left == T.nil

4 x = z.right

5 RB-TRANSPLANT(T, z, z.right)
6 elseif z.right == T.nil

7 x = z.left

8 RB-TRANSPLANT(T, z, z.left)

9 else y = TREE-MINIMUM(Z.right)

10 y-original-color = y.color
11 X = y.right

12 if y.p==z

13 xX.p=y

14 else RB-TRANSPLANT(T, y, y.right)
15 y.right = z.right

16 y.right.p =y

17 RB-TRANSPLANT(T, z, y)
18 y.left = z.left

19 y.left.p =y

20 y.color = z.color

21 if y-original-color == BLACK
22 RB-DELETE-Fixup(T, x)

Although RB-DELETE contains almost twice as many lines of pseudocode as
TREE-DELETE, the two procedures have the same basic structure. You can find
each line of TREE-DELETE within RB-DELETE (with the changes of replacing
NIL by 7.nil and replacing calls to TRANSPLANT by calls to RB-TRANSPLANT),
executed under the same conditions.

Here are the other differences between the two procedures:

* We maintain node y as the node either removed from the tree or moved within
the tree. Line 1 sets y to point to node z when z has fewer than two children
and is therefore removed. When z has two children, line 9 sets y to point to z’s
successor, just as in TREE-DELETE, and y will move into z’s position in the
tree.

* Because node y’s color might change, the variable y-original-color stores y’s
color before any changes occur. Lines 2 and 10 set this variable immediately
after assignments to y. When z has two children, then y # z and node y
moves into node z’s original position in the red-black tree; line 20 gives y the
same color as z. We need to save y’s original color in order to test it at the

13.4 Deletion 325

end of RB-DELETE,; if it was black, then removing or moving y could cause
violations of the red-black properties.

* As discussed, we keep track of the node x that moves into node y’s original
position. The assignments in lines 4, 7, and 11 set x to point to either y’s only
child or, if y has no children, the sentinel 7.nil. (Recall from Section 12.3
that y has no left child.)

* Since node x moves into node y’s original position, the attribute x.p is always
set to point to the original position in the tree of y’s parent, even if x is, in fact,
the sentinel 7. nil. Unless z is y’s original parent (which occurs only when z has
two children and its successor y is z’s right child), the assignment to x.p takes
place in line 6 of RB-TRANSPLANT. (Observe that when RB-TRANSPLANT
is called in lines 5, 8, or 14, the second parameter passed is the same as x.)

When y’s original parent is z, however, we do not want x. p to point to y’s orig-
inal parent, since we are removing that node from the tree. Because node y will
move up to take z’s position in the tree, setting x.p to y in line 13 causes x.p
to point to the original position of y’s parent, even if x = T.nil.

* Finally, if node y was black, we might have introduced one or more violations
of the red-black properties, and so we call RB-DELETE-FIXUP in line 22 to
restore the red-black properties. If y was red, the red-black properties still hold
when y is removed or moved, for the following reasons:

1. No black-heights in the tree have changed.

2. No red nodes have been made adjacent. Because y takes z’s place in the
tree, along with z’s color, we cannot have two adjacent red nodes at y’s new
position in the tree. In addition, if y was not z’s right child, then y’s original
right child x replaces y in the tree. If y is red, then x must be black, and so
replacing y by x cannot cause two red nodes to become adjacent.

3. Since y could not have been the root if it was red, the root remains black.

If node y was black, three problems may arise, which the call of RB-DELETE-
Fixup will remedy. First, if y had been the root and a red child of y becomes the
new root, we have violated property 2. Second, if both x and x.p are red, then
we have violated property 4. Third, moving y within the tree causes any simple
path that previously contained y to have one fewer black node. Thus, property 5
is now violated by any ancestor of y in the tree. We can correct the violation
of property 5 by saying that node x, now occupying y’s original position, has an
“extra” black. That is, if we add 1 to the count of black nodes on any simple path
that contains x, then under this interpretation, property 5 holds. When we remove
or move the black node y, we “push” its blackness onto node x. The problem is
that now node x is neither red nor black, thereby violating property 1. Instead,

326

Chapter 13 Red Black Trees

node x is either “doubly black™ or “red-and-black,” and it contributes either 2 or 1,
respectively, to the count of black nodes on simple paths containing x. The color
attribute of x will still be either RED (if x is red-and-black) or BLACK (if x is
doubly black). In other words, the extra black on a node is reflected in x’s pointing
to the node rather than in the color attribute.

We can now see the procedure RB-DELETE-FIXUP and examine how it restores
the red-black properties to the search tree.

RB-DELETE-Fixup(T, x)
1 while x # T.root and x.color == BLACK

2 if x == x.p.left

3 w = x.p.right

4 if w.color == RED

5 w.color = BLACK // case 1
6 x.p.color = RED // case 1
7 LEFT-ROTATE(T, x.p) // case 1
8 w = X.p.right // case 1
9 if w.left.color == BLACK and w.right.color == BLACK

10 w.color = RED // case 2
11 X =Xx.p // case 2
12 else if w.right.color == BLACK

13 w. left.color = BLACK // case 3
14 w.color = RED // case 3
15 RIGHT-ROTATE(T, w) // case 3
16 w = x.p.right // case 3
17 w.color = x.p.color // case 4
18 x.p.color = BLACK // case 4
19 w.right.color = BLACK // case 4
20 LEFT-ROTATE(T, x.p) // case 4
21 x = T.root // case 4
22 else (same as then clause with “right” and “left” exchanged)

23 x.color = BLACK

The procedure RB-DELETE-FIXUP restores properties 1, 2, and 4. Exercises
13.4-1 and 13.4-2 ask you to show that the procedure restores properties 2 and 4,
and so in the remainder of this section, we shall focus on property 1. The goal of
the while loop in lines 1-22 is to move the extra black up the tree until

1. x points to a red-and-black node, in which case we color x (singly) black in
line 23;

2. x points to the root, in which case we simply “remove” the extra black; or

3. having performed suitable rotations and recolorings, we exit the loop.

13.4 Deletion 327

Within the while loop, x always points to a nonroot doubly black node. We
determine in line 2 whether x is a left child or a right child of its parent x.p. (We
have given the code for the situation in which x is a left child; the situation in
which x is a right child—line 22—is symmetric.) We maintain a pointer w to
the sibling of x. Since node x is doubly black, node w cannot be T.nil, because
otherwise, the number of blacks on the simple path from x.p to the (singly black)
leaf w would be smaller than the number on the simple path from x.p to x.

The four cases? in the code appear in Figure 13.7. Before examining each case
in detail, let’s look more generally at how we can verify that the transformation
in each of the cases preserves property 5. The key idea is that in each case, the
transformation applied preserves the number of black nodes (including x’s extra
black) from (and including) the root of the subtree shown to each of the subtrees
a, B, ...,¢. Thus, if property 5 holds prior to the transformation, it continues to
hold afterward. For example, in Figure 13.7(a), which illustrates case 1, the num-
ber of black nodes from the root to either subtree « or f is 3, both before and after
the transformation. (Again, remember that node x adds an extra black.) Similarly,
the number of black nodes from the root to any of y, §, ¢, and ¢ is 2, both be-
fore and after the transformation. In Figure 13.7(b), the counting must involve the
value ¢ of the color attribute of the root of the subtree shown, which can be either
RED or BLACK. If we define count(RED) = 0 and count(BLACK) = 1, then the
number of black nodes from the root to « is 2 + count(c), both before and after
the transformation. In this case, after the transformation, the new node x has color
attribute c, but this node is really either red-and-black (if c = RED) or doubly black
(if ¢ = BLACK). You can verify the other cases similarly (see Exercise 13.4-5).

Case 1: x’s sibling w is red

Case 1 (lines 5-8 of RB-DELETE-FIXUP and Figure 13.7(a)) occurs when node w,
the sibling of node x, is red. Since w must have black children, we can switch the
colors of w and x.p and then perform a left-rotation on x.p without violating any
of the red-black properties. The new sibling of x, which is one of w’s children
prior to the rotation, is now black, and thus we have converted case 1 into case 2,
3, or 4.

Cases 2, 3, and 4 occur when node w is black; they are distinguished by the
colors of w’s children.

2Asin RB INSERT FIXUP, the cases in RB DELETE FIXUP are not mutually exclusive.

328

Chapter 13 Red Black Trees

Case 2: x’s sibling w is black, and both of w’s children are black

In case 2 (lines 10-11 of RB-DELETE-FIXUP and Figure 13.7(b)), both of w’s
children are black. Since w is also black, we take one black off both x and w,
leaving x with only one black and leaving w red. To compensate for removing
one black from x and w, we would like to add an extra black to x.p, which was
originally either red or black. We do so by repeating the while loop with x.p as
the new node x. Observe that if we enter case 2 through case 1, the new node x
is red-and-black, since the original x.p was red. Hence, the value ¢ of the color
attribute of the new node x is RED, and the loop terminates when it tests the loop
condition. We then color the new node x (singly) black in line 23.

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black
Case 3 (lines 13—-16 and Figure 13.7(c)) occurs when w is black, its left child
is red, and its right child is black. We can switch the colors of w and its left
child w.left and then perform a right rotation on w without violating any of the
red-black properties. The new sibling w of x is now a black node with a red right
child, and thus we have transformed case 3 into case 4.

Case 4: x’s sibling w is black, and w’s right child is red

Case 4 (lines 17-21 and Figure 13.7(d)) occurs when node x’s sibling w is black
and w’s right child is red. By making some color changes and performing a left ro-
tation on x.p, we can remove the extra black on x, making it singly black, without
violating any of the red-black properties. Setting x to be the root causes the while
loop to terminate when it tests the loop condition.

Analysis

What is the running time of RB-DELETE? Since the height of a red-black tree of n
nodes is O(lgn), the total cost of the procedure without the call to RB-DELETE-
Fixup takes O(lgn) time. Within RB-DELETE-FIXUP, each of cases 1, 3, and 4
lead to termination after performing a constant number of color changes and at
most three rotations. Case 2 is the only case in which the while loop can be re-
peated, and then the pointer x moves up the tree at most O(lg n) times, performing
no rotations. Thus, the procedure RB-DELETE-FIXUP takes O(lgn) time and per-
forms at most three rotations, and the overall time for RB-DELETE is therefore
also O(lgn).

(a)

(b)

(c)

(@

134 Deletion 329

new x = T.roor

Figure 13,7 The cases in the while loop of the procedure RB DELETE FIXUP. Darkened nodes
have color attributes BLACK, heavily shaded nodes have color attributes RED, and lightly shaded
nodes have color attributes represented by ¢ and ¢’, which may be either RED or BLACK. The letters
a, B, ..., represent arbitrary subtrees. Each case transforms the configuration on the left into the
configuration on the right by changing some colors and/or performing a rotation. Any node pointed
to by x has an extra black and is either doubly black or red and black. Only case 2 causes the loop to
repeat. (a) Case 1 is transformed to case 2, 3, or 4 by exchanging the colors of nodes B and D and
performing a left rotation. (b) In case 2, the extra black represented by the pointer x moves up the
tree by coloring node D red and setting x to point to node B. If we enter case 2 through case 1, the
while loop terminates because the new node x is red and black, and therefore the value ¢ of its color
attribute is RED. (¢) Case 3 is transformed to case 4 by exchanging the colors of nodes C and D and
performing a right rotation. (d) Case 4 removes the extra black represented by x by changing some
colors and performing a left rotation (without violating the red black properties), and then the loop
terminates.

