
TThhee VViieewwiinngg TTrraannssffoorrmmaattiioonn
Technical Memo No. 84

Alvy Ray Smith

Pixar
P. O. Box 13719

San Rafael, CA 94913

June 24, 1983
(Revised May 4, 1984)

This document was reentered by Alvy Ray Smith in Microsoft Word on Apr 22, 1999. Spelling
and punctuation are generally preserved, but trivially minor spelling errors are corrected. Oth-
erwise additions or changes made to the original are noted inside square brackets or in footnotes.

Introduction
The viewing transformation is the operation that maps a perspective view of an

object in world coordinates into a physical device’s display space. In general, this
is a complex operation which is best grasped intellectually by the typical com-
puter graphics technique of dividing the operation into a concatenation of sim-
pler operations.

The terms world, model, and eye space will refer to coordinate systems in
object space coordinates. World space refers to the 3-D universe in which objects
are embedded. Model space refers to a coordinate system embedded in world
space but with its origin attached to a particular model. Eye space is similar but
has its origin at the eyepoint from which a view is desired. I will tend to use
world, model, and object space interchangeably.

The terms device, screen, and display space will be used interchangeably for
coordinate systems in image space coordinates. Screen space refers to a coordinate
system attached to a display device with the xy plane coincident with the display
surface. It can be thought of as a 2-D space with a third dimension carried along
for auxiliary purposes (e.g., depth cueing).

Orthographic projection will be mentioned from time to time, but the memo
concentrates on perspective projection. Other projections such as elevation
oblique or plan oblique will not be treated.

We assume that we are to view a scene of objects in object space, or world
coordinates, and that it is to displayed in some image space, or device coordi-
nates. The coarsest subdivision of the transformation task is

1. Clip the scene against the viewing frustum for the desired perspective.

2. Transform all remaining points into the desired image space.

The Viewing Transformation

Pixar Tech Memo 84

2

This has the drawback that clipping against an arbitrary frustum is difficult.
Reversing the order of the two steps is another possibility. It has the flaw that

all points must be transformed whether they are ultimately visible or not. But,
more importantly, it has the serious flaw that it requires clipping after perspec-
tive. As explained in Appendix A, there are two ways of applying perspective. In
one of them, the “serious” flaw is a fatal flaw because points behind the eye may
be mapped into the visible space by the perspective step.

So it is typical to divide the problem into three major steps:

3. Transform the scene into a normalized set of viewing coordinates for which
clipping is easy.

4. Clip in this normalized space.

5. Complete the transformation of remaining points, including the perspective
projection.

In the case where the database is huge, as we expect those in Computer Imagery
to be, we want the transformation of step (1) to be as simple as possible since all
points pass through it. The ease of clipping in normalized space must offset the
cost of this transformation else it will not get used. Alternatively, simple culling
procedures might be invoked to cut down the database before invoking the first
transformation above.

Figure 1 from [FOLVAN] illustrates the process we have conventionalized.
This process assumes three kinds of transformations:

1. Modeling transformations for manipulating a model’s database in world co-
ordinates. Presumably these would be applied in some type of modeling
program, or model editor. The results would be input to the left side of the
Figure 1.

2. Viewing transformations for manipulating a simulated camera’s view of a
model. These are mainly what we are talking about here. They include clip-
ping, perspective projection, and mapping to display space.

3. Image transformations move an already clipped object about in device space.

Here we shall not be particularly concerned with modeling transformations.
Their results will be changed, as indicated in the leftmost box of the Figure 1, into
a normalized space as a first step for viewing. Our only concern with image
transformations will be that we take them into account and leave hooks for their
invocation.

The approach here will be to present a convention for specifying a view then
follow with a convention for transforming a conventional view. The conventional
view specification is the more important as far as conventions are concerned. The
other part is a justification for and a guide to the use of the convention.

The Viewing Transformation

Pixar Tech Memo 84

3

Conventional View Spec
The conventional view is that defined by the following conventional structure:

typedef double WorldType;
typedef WorldPoint { WorldType x, y, z; };
typedef ViewPlanePoint { WorldType u, v; };
#define PERSPECTIVE 1
#define ORTHOGRAPHIC 2

struct ViewStructure {

WorldPoint ViewPoint; /* center of projection point */
WorldPoint ViewNormal; /* view plane normal vector */
WorldPoint ViewUp; /* view up vector */

WorldType ViewDistance; /* from ViewPoint */
WorldType NearDistance; /* from ViewPoint */
WorldType FarDistance; /* from ViewPoint; 0 means infinite*/

ViewPlanePoint WindowCenter; /* relative view plane center */
ViewPlanePoint WindowHalfsize; /* window u, v halfsizes */

int ProjectionType; /* PERSPECTIVE or ORTHOGRAPHIC */

};

This differs from [MCHCAR] only in sticking with ViewUp rather than changing
to ViewRight as advocated there (for no particular advantage that I can see for
perspective or orthographic projections). I have also dropped their parameters G
and F which are not needed for perspective or orthographic projections.

To complete the spec, a normalized set of device coordinates needs to be
specified. Let the conventional normalized device coordinates (NDC) be

− ≤ ≤1 1. .x ,
− ≤ ≤1 1. .y ,
 0 1. .≤ ≤z ,

with x left, y up, and z in—i.e., a left-handed system. This is a departure from the
Core standard [CORE79] which defines NDC as x, y, and z each on [0., 1.]. Our
choice provides a cleaner presentation, and an extremely simple transformation
maps our NDC to theirs.

Finally, let the conventional normalized clipping region for perspective pro-
jection be as shown in the Figures 2 and 3 (from [MCHCAR]). The frustum of
Figure 2 between “Front” and “Back” is the canonical viewing volume (frustum).
Notice that I have chosen to use “near” and “far” rather than the “front” and
“back” of [FOLVAN], [CORE79], and [MCHCAR].

The most important part of this spec is the struct ViewStructure. This is the
structure that is passed from program to program. It is the structure that is as-

The Viewing Transformation

Pixar Tech Memo 84

4

sumed kept up-to-date by any program changing the view. Since a far distance of
0 is disallowed, this value is used to denote the frequently desired case of the far
plane at infinity. Notice that all numbers in ViewStructure are in world space.

We ahve not opted to specify ViewStructure with such traditional parame-
ters as aspect ratio and field-of-view angle because field-of-view angle, as usu-
ally defined, is meaningless for off-center windows. But since the traditional pa-
rameters will get used, they are conventionalized as follows:

1. Aspect ratio will be the ratio of width to height. It is therefore equal to Win-
dowHalfsize.u/WindowHalfsize.v.

2. Field-of-view angle will be the full horizontal angle of the viewing frustum for
a centered window. Thus it is equal to 2*arctan(WindowHalfsize.u/ ViewDis-
tance).

Notice that the field-of-view angle by this definition does not change as the view-
ing window translates across the view plane.

Elaboration of the View Spec
The notion is straightforward: Specify the location of the ViewPoint, or eye-

point, in world space. Then specify which direction you’re looking with
ViewNormal. Orient the view by specifying ViewUp. The component of ViewUp
perpendicular to ViewNormal gives the “up” direction. Finally, specify where
the view plane is to be along the direction ViewNormal from ViewPoint—i.e.,
specify ViewDistance. The perspective projection of objects onto this view plane
is what will be mapped into a display.

All that remains to do is to specify what part of the infinite view plane is to
be mapped to the display. Since displays tend to be rectangular, it is typical to
specify a (rectangular) window in the view plane as the portion of interest. In our
convention, this will be done by utilizing a uv-coordinate system in the view
plane with the origin being where a ray from the ViewPoint in the direction
ViewNormal intersects the view plane. Let n be the unit normal in direction
ViewNormal, and let v be the unit normal in the up direction. Thus

v
UP UP n n
UP UP n n

= - ◊
- ◊

()
()

,

where UP is an abbreviation for vector ViewUp. So v is the coordinate along v
and u along u, where

u n v= ¥ .
Similarly, n is the coordinate along n. Notice that the uvn system is a left-handed
one. Figures 4-7 from [FOLVAN] illustrate this arrangement. In these figures,
VRP is our uv origin, VPN is our ViewNormal, and VUP is our ViewUp. Notice
that the window may be off center.

The main difference between the Core standard and our convention is the
method of specifying the view plane. In the Core standard, the so-called “view
reference point” (cf. VRP in Figures 4-7) is specified explicitly. The distances of

The Viewing Transformation

Pixar Tech Memo 84

5

the view, near, and far planes are all measured relative this point. The origin of
the uv-coordinate system in the view plane is located where a line parallel
ViewNormal and passing through the view reference point intersects the view
plane. As pointed out in [MCHCAR], this specification can exhibit unnatural
consequences. [FOLVAN] ameliorates this somewhat by requiring the view ref-
erence point to lie in the view plane, but the “slipping window” problem permit-
ted by the Core spec still exists. The [MCHCAR] approach we have adopted
avoids this problem.

The viewing frustum which results from passing the near and far clipping
planes through a view volume, as shown in Figures 6-7, is illustrated in Figure 8.
The purpose of the leftmost transformation in Figure 1 is to map a frustum such
as this onto the normalized frustum shown in Figure 2. This normalizing transfor-
mation is detailed in the next section.

How to Use the View Spec
Here we show how to turn the view spec into the normalizing transforma-

tion. All that we are assuming about the world coordinate system is that it is
right-handed. So the normalizing transformation must take this generality into
account.

The steps to be performed are the following:

1. Translate the center of projection, ViewPoint, to the origin of the world sys-
tem with matrix A (see below).

2. Transform the world system to eye space which is the system corresponding
to Figure 2 with the eyepoint, or ViewPoint, at the origin. So Xc , Yc , and Zc in
that figure correspond respectively to directions u, v, n. Thus eye space is
left-handed. This coordinate transformation is given by matrix B. See Ap-
pendix C for a refresher on how to derive this matrix.

3. Skew (shear) the window center to the Zc axis with the matrix C. Notice that
lengths in the view plane are not changed by this transformation.

4. Scale so that the far face of the view volume is the unit square and lies at
Zc = 1. This is done with matrix D.

The concatenation N ABCD= is the normalizing transformation. (We assume
everywhere that vectors are row vectors and matrices multiply them from the
right—i.e., computer graphics normal form.)

The four matrices are easy to specify if we introduce some simplifying sym-
bols. Let V be the ViewPoint vector in world space. Let 0 be the vector 0 0 0
and let I3 be the 3×3 identity matrix. Let a superscript T indicate1 the transpose of
a vector. Let n, f, and d represent the near, far, and view distances, respectively.

1 “represent” in the original

The Viewing Transformation

Pixar Tech Memo 84

6

Finally, let cu and cv be the window center uv coordinates and su and sv be the
window halfsizes. Then

A
I 0

V
=

-
L
NM

O
QP

3

1

T

B
B 0

=
L
NM

O
QP

3

0 1

T

C = - -

L

N

MMMMM

O

Q

PPPPP

1 0 0 0

0 1 0 0

1 0

0 0 0 1

c
d

c
d

u v

D =

L

N

MMMMMMMM

O

Q

PPPPPPPP

d
s f

d
s f

f

u

v

0 0 0

0 0 0

0 0
1

0

0 0 0 1

.

C is derived by requiring the center of the viewing window c c du v 1 be
mapped by a skew into the point 0 0 1d . Since z is to remain fixed with x and
y being skewed, two entries of a skewing matrix are required. Let them be r and
s. Then c rdu + = 0 and c sdv + = 0, giving the r and s shown in matrix C.

D is also easily derived. After the skew by C, the viewing volume is centered
along the n axis. Since this skew preserves lengths along constant z planes, the
viewing window extends from -su to su in x and from -sv to sv in y in the z d=
plane. The far face of the viewing volume, at z f= , extends from –X to X in x and
from –Y to Y in y, where X and Y can be determined from similar right triangles
to be

X
s f
d

Y
s f
d

u v= = .

This plus the fact that the far face lies at distance f requires the scaling matrix D
shown to obtain the canonical viewing volume. The case where f is infinite is
handled in Appendix D.

[MCHCAR] shows that the product CD can be expressed as the product of

E =

L

N

MMMMMMMM

O

Q

PPPPPPPP

1
0 0 0

0
1

0 0

0 0
1

0

0 0 0 1

f

f

f

The Viewing Transformation

Pixar Tech Memo 84

7

F =

L

N

MMMM

O

Q

PPPP

d

d

0 0 0

0 0 0

0 0 1 0

0 0 0 1

G =
- -

L

N

MMMM

O

Q

PPPP

1 0 0 0

0 1 0 0

1 0

0 0 0 1

c cu v

H =

L

N

MMMMMMM

O

Q

PPPPPPP

1
0 0 0

0
1

0 0

0 0 1 0

0 0 0 1

s

s

u

v

.

So the viewing parameters of ViewStructure may be nicely partitioned into six
matrices with one view spec parameter per matrix.

Going the other way, the normalizing transformation in collapsed form is

N N N
u v n 0

u V v V n V
= =

- ◊ - ◊ - ◊
L
NM

O
QP - -

L

N

MMMMMMMM

O

Q

PPPPPPPP

L R

T T T T

u

v

u

u

v

v

d
s f

d
s f

c
s f

c
s f f

1

0 0 0

0 0 0

1
0

0 0 0 1

.

where N ABL = and N CDR = . For a fixed camera, N L and N R may be premulti-
plied. For the general case of a moving camera, only N R is precomputed since N L
carries all the changes.

The normalizing transformation for orthographic projections can be shown
[MCHCAR] to be

N ABo

u v

u

v

c c n

s

s

f n

=

- - -

L

N

MMMM

O

Q

PPPP
-

L

N

MMMMMMMM

O

Q

PPPPPPPP

1 0 0 0

0 1 0 0

0 0 1 0

1

1
0 0 0

0
1

0 0

0 0
1

0

0 0 0 1

.

No transforms the viewing volume (a rectangular box) into the normalized view-
ing volume shown in Figure 3. This may also be collapsed for efficient use with a
moving camera to

The Viewing Transformation

Pixar Tech Memo 84

8

N N N
u v n 0

u V v V n Vo L oR

T T T T

u

v

u

u

v

v

s

s

f n
c
s

c
s

n
f n

= =
- ◊ - ◊ - ◊
L
NM

O
QP

-
- - -

-

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

1

1
0 0 0

0
1

0 0

0 0
1

0

1

.

The Rest of the Viewing Transformation
So far we have covered just the leftmost box of Figure 1. The second box is

where the clipping takes place. Details of how to clip to the canonical viewing
volume are given in [FOLVAN]. There are several directions we could proceed at
this point:

1. The perspective projection of points now inside the canonical viewing vol-
ume is applied (see Appendix A). This includes a divide by the homogene-
ous coordinate and reduces the 3-D data to 2-D information in the view
plane—to be exact, in the view window in the view plane. These could then
be directly mapped into the desired display space. We shall not further ex-
plore this possibility here.

2. As above, but the points after perspective projection are first mapped into
NDC (normalized device coordinates) before a final additional mapping to a
specific device. This has the advantage of device independence. For example,
points in NDC could either be mapped to a Picture System screen or to a
framebuffer display.

3. Either (1) or (2) is okay if no further manipulations of the image—e.g., no im-
age transformations—are to be performed. Another example of further ma-
nipulation is hidden surface removal. Otherwise the other boxes in Figure 1
need to be implemented. The notion is to undo the squeezing of line-of-sight
rays to a single point, the ViewPoint, into an orthogonal space where the
line-of-sight rays are parallel, hence where arithmetic and geometry are easy
(particulary for hidden surface comparisons). After any manipulations are
performed in this space, a simple mapping into NDC is executed and then a
mapping to display space as in (2).

Spreading the view volume into a rectangular prism is illustrated in Figure 9
from [FOLVAN]. The corresponding matrix is (see Appendix B)

The Viewing Transformation

Pixar Tech Memo 84

9

P = -
-
-

L

N

MMMMMM

O

Q

PPPPPP

1 0 0 0

0 1 0 0

0 0
1

1
1

0 0
1

0

z
z
z

min

min

min

,

where zmin is the z coordinate of point 0 0 1n in eye space transformed by
CD. So

z
n
fmin =

Working backwards give P in terms of the viewing parameters:

P = -
-
-

L

N

MMMMMM

O

Q

PPPPPP

1 0 0 0

0 1 0 0

0 0 1

0 0 0

f
f n

n
f n

.

This mapping deforms the canonical viewing frustum into a rectangular prism of
width 2, height 2, and depth 1, centered on the z axis—i.e., NDC.

A translate of point - -1 1 0 1 to the origin followed by a scale by .5 in x
and y converts this prism into Core standard NDC, with x, y, and z each on
[0.,1.]. The following matrix accomplishes this task:

K =

L

N

MMMM

O

Q

PPPP

.

.

. .

5 0 0 0

0 5 0 0

0 0 1 0

5 5 0 1

.

Then there must be a mapping to the desired device. Let Xmin , Xmax , Ymin, and
Ymax define the desired portion of a display screen in image coordinates (but real).
The z coordinate may be mapped into a desired range, Zmin to Zmax, also. This map
is given by

L =

-
-

-

L

N

MMMM

O

Q

PPPP

X X

Y Y

Z Z

X Y Z

max min

max min

max min

min min min

0 0 0

0 0 0

0 0 0

1

.

So the mapping from NDC into real screen space is given by

The Viewing Transformation

Pixar Tech Memo 84

10

KL =

-

-

-
+ +

L

N

MMMMMMM

O

Q

PPPPPPP

X X

Y Y

Z Z
X X Y Y

Z

max min

max min

max min

max min max min
min

2
0 0 0

0
2

0 0

0 0 0

2 2
1

.

Finally, there is the mapping of real screen space to integer screen space, or
pixel space. The model we shall use for this mapping is the following2: A pixel at
integer location (i, j) is assumed to represent the real space

i x i j y j- £ £ + - £ £ +. . . .5 5 5 5 .
The interpretation of the model is that the smoothing filter that is used for sam-
pling the real space to obtain the sampled pixel space has a central lobe with unit
extent in x and y and centered at (i, j). The lobe extent is measured between the
two zero crossings nearest the filter origin. A common—but frequently inade-
quate—filter is the box filter which is nothing but a central “lobe” of unit height
everywhere and covering precisely the square of space defined above. So the
mapping from real screen space to pixel space is

x y z x y z1 5 5 5 1Æ + + +floor . . .c h,
where z is treated just like x and y, and

floor floor() floor() floor() floor ()a b c d a b c dc hÆ
is the extension of Unix function floor() to vectors. The analytic part of this func-
tion can be expressed by the matrix

M =

L

N

MMMM

O

Q

PPPP

1 0 0 0

0 1 0 0

0 0 1 0

5 5 5 1. . .

.

The application of this matrix is then followed by the floor() function. It returns
doubles which may be assigned to integers with no loss of precision. M is noth-
ing more than a translate by half a pixel.

Screen Mapping Details
Unfortunately, not all displays fit into the neat form assumed in the deriva-

tion above. In fact, our raster displays have y positive down. The coordinate
transformation which takes NDC into this inverted form is derived as J3r in Ap-
pendix C. Our calligraphic display has far z mapped to lower intensity than near
z. If intensity value is taken as the screen map in the z direction, then the screen
normal points out of the screen. Similarly, the transformation taking NDC into

2 I no longer advocate this mapping. See my Microsoft Technical Memo 6, A Pixel is Not a Little
Square, A Pixel is Not a Little Square, A Pixel is Not a Little Square! (And a Voxel is Not a Little Cube),
Jul 1995, for details.

The Viewing Transformation

Pixar Tech Memo 84

11

this form is derived in Appendix C as J3c . The full transformation is given in ei-
ther case by

J
J 0

=
L
NM

O
QP

3

0 1

T

.

So the complete screen mapping from NDC to pixel space is S JKLM= followed
by the floor() function. Using J3r , as derived in Appendix C, gives the raster screen
mapping:

Sr

X X

Y Y

Z Z
X X Y Y

Z

=

−

−

−
+ + + + +

L

N

MMMMMMM

O

Q

PPPPPPP

max min

min max

max min

max min max min
min

2
0 0 0

0
2

0 0

0 0 0
1

2
1

2
1
2

1

.

J3c , also derived in Appendix C, yields the calligraphic screen mapping:

Sc

X X

Y Y

Z Z
X X Y Y

Z

=

−

−

−
+ + + + +

L

N

MMMMMMM

O

Q

PPPPPPP

max min

max min

min max

max min max min
min

2
0 0 0

0
2

0 0

0 0 0
1

2
1

2
1
2

1

.

These are named for the type of display to which they typically, but not necessar-
ily, correspond.

Nonsquare Pixel Spacing3
Our Ikonas framebuffer displays have a unit x length which is greater than

the unit y length in the natural coordinate system for the display which is its
pixel location coordinates. The ratio of unit x length to unit y length is defined to
be the pixel aspect ratio (PAR) of a device.

The PAR can be determined from a window of known horizontal and verti-
cal resolution, HRES and VRES, and known aspect ratio, AR:

PAR AR
VRES
HRES

= ∗ .

This is usually derived from the aspect ratio of the full display and the full hori-
zontal and vertical resolutions. For example, with the Ikonas display, HRES is
512 pixels, VRES is 488 pixels, and the aspect ratio is the standard video aspect
ratio of 4/3; hence

PARIkonas = ∗ ≈4
3

488
512

127. .

3 “Nonsquare Pixels” in the original, a terminology I now strongly eschew.

The Viewing Transformation

Pixar Tech Memo 84

12

Interestingly, the PAR does not explicitly enter into the viewing transforma-
tion above. Its importance becomes evident when windows other than full screen
windows are displayed on a device. If the screen limits Xmin , Xmax , etc., are such
that the aspect ratio matches that stored in the corresponding view struct, there is
no problem; the viewing transformation as already described handles the non-
squareness of the pixels. But in order to define the screen limits in the first place,
given a known aspect ratio, requires the PAR. Similarly, to derive the aspect ratio
from a given set of screen limits also requires the PAR, in general.

Conventional Display Spec
The data necessary for completely specifying the screen mapping for a dis-

play resides in the conventional display spec given by the following conventional
structure:

typedef double ScreenType;
typedef struct { ScreenType x, y, z; } ScreenPoint;

struct DisplayStructure {

ScreenPoint FullScreenMin; /* in pixel space */
ScreenPoint FullScreenMax; /* in pixel space */
double FullScreenAspectRatio; /* full screen width to height */
ScreenPoint ScreenMin; /* current, in pixel space */
ScreenPoint ScreenMax; /* current, in pixel space */
WorldPoint ScreenNormal; /* screen normal vector in NDC */
WorldPoint ScreenUp; /* screen up vector in NDC */

};

Screen right is always assumed to be right (1 0 0 in NDC). The matrix J can
be determined from this assumption and from ScreenNormal and ScreenUp in
the struct. Windowing is permitted in z as well as in x and y, but linear distortion
in z is ignored. That is, there is no need for a width-to-depth pixel aspect ratio.
FullScreenMin holds Xmin , Ymin , and Zmin ; FullScreenMax holds Xmax , Ymax , and
Zmax . Thus the PAR for a device described with such a structure is

PAR FullScreenAspectRatio
Y Y
X X

= ∗ − +
− +

max min

max min

1
1

.

Summary
The entire viewing transformation on a point p in model space is given by

pNPS pABEFGHPJKLM= .
Modeling transformations are implicit in p. If T is a modeling transformation and
q is a point in the “raw” model database, then p qT= . In general, a homogene-
ous divide (division by the homogeneous coordinate) should follow transforma-
tion by T. Clipping occurs on the points pN. Division by the homogeneous coor-

The Viewing Transformation

Pixar Tech Memo 84

13

dinate occurs to points pNP to obtain NDC. The screen mapping S is either Sc or
Sr . The floor() function is applied to points pNPS to obtain integer display coor-
dinates. Any image transformations X or hidden surface calculations are applied
to points pNP in NDC. If X maps NDC to NDC, the full transform is pNPXS. See
Figure 10 (cf., Figure 1). N is conveniently decomposed into N NL R correspond-
ing to the parts which do and do not change with camera motion.

A shortcut for the case where no image transformations or hidden surface
calculations are to be performed is represented by pNQS’ where Q is defined in
Appendix A and ′ =S RS is the corresponding mapping to display space where

R =

L

N

MMMMMM

O

Q

PPPPPP

f
d

f
d

0 0 0

0 0 0

0 0 1 0

0 0 0 1

.

For this shortcut the homogeneous coordinate division is performed on points
pNQ, and z information is ignored in the screen map.

A far plane at infinity is not handled by the formulation above but may be
dealt with by the viewing transformation

pN P S pABEF GHP JKLM∞ ∞ ∞ ∞=
(see Appendix D), where N N N∞ =

∞L R . This is a different transformation from
that above and must be treated with care. In particular, the normalization is to
the canonical infinite viewing frustum, so the clipping algorithm used must be
altered in the way it handles clipping in z (but not in x and y). The shortcut
method is represented by pN P S∞ ∞ in this case.

Handy Ways to Generate a View
There are a variety of ways to write an interface to drive the viewing trans-

formation. A typical way is to provide two routines View(distance, azimuth, pitch,
roll) and Perspective(fieldofview, aspectratio, near, far) from which all the viewing
parameters can be derived. The first establishes the location and direction of the
viewing frustum; the second defines its size and shape. The two routines corre-
spond to the two matrices N L and N R derived above; the parameters that change
as a camera moves are concentrated in one routine.

Before describing these routines in detail, the special angles azimuth, pitch,
and roll will be defined. There are several ways to define them (and name them)
so it is important to settle on one set of definitions. The definitions here are based
on those used in flying aircraft over terrain with x east, y north, and z up (follow-
ing a suggestion by Loren Carpenter).

Azimuth is the angle of a radius vector about the origin of world space in the
xy plane. It is 0 degrees at the positive y axis and increases positively clockwise
about the z axis (i.e., follows lefthand rule about z axis). A mnemonic for this an-

The Viewing Transformation

Pixar Tech Memo 84

14

gle is a compass at the origin, lying on the xy plane. Azimuth is 0 degrees when
the needle points north; 90 degrees is east.

Pitch is the angle of a radius vector out of the xy plane. So it is 0 at the xy
plane, positive above it, and negative below.

Roll is the angle about a view normal as seen looking along the normal. It is 0
when the rightward vector is to the right, parallel the xy plane. It increases posi-
tively counterclockwise looking in the positive normal direction. Thus roll fol-
lows the lefthand rule about the view normal.

When these three angles are relative another origin other than the world
space origin, then the coordinate system against which they are measured is as-
sumed to be a simple translation of the world space system to the new origin—
e.g., the eyepoint. Note that the common alternative names “yaw”, “elevation”,
and “twist” are not allowed by these definitions.

View() defines the location of the ViewPoint by giving its distance from the
world space origin along a radius vector at angle azimuth in the xy plane and at
angle pitch from the xy plane. The vector from the origin to this point defines the
ViewNormal. ViewUp is derived from the angle roll measured about the
ViewNormal. ViewUp is assumed perpendicular to ViewNormal.

A variation on View() which is more versatile is FullView(vx, vy, vz, azimuth,
pitch, roll) which places the ViewPoint at vx vy vz 1 and then locates the
ViewNormal and ViewUp with the three angles as before but with respect to the
ViewPoint as origin. So the ViewNormal is not restricted to be collinear with the
line from world space origin to ViewPoint.

Perspective() defines the viewing frustum, assuming a centered window. This
is a common assumption but does not fully utilize the view spec. The fieldofview
and aspectratio are related to the WindowHalfsize and ViewDistance as explained
before. Since near and far are given as distances of the near and far clipping
planes in eye space, they can be used directly for NearDistance and FarDistance
in ViewStructure. Another assumption this particular interface makes is that the
view plane and the near clipping are the same. This is another common restric-
tion on the generality provided by the view spec. ViewDistance is simply NearD-
istance. Setting ProjectionType to PERSPECTIVE completes the view spec in this
example.

Bill Reeves has provided routines of the flavor of those above plus several
others for driving the viewing transformation. For example, he also provides the
routines LookAt(vx, vy, vz, px, py, pz, roll) and Camera(xr, yr, zr, xn, yn, zn, xup,
yup, zup, deye) in place of View() and Window(wleft, wright, wtop, wbottom, near, far)
in place of Perspective().

LookAt() locates the ViewPoint at vx vy vz 1 . The ViewNormal direction
is that defined by a vector from ViewPoint to px py pz 1 . Roll is interpreted
as before. This routine is handy for keeping a single point centered on the screen
as the camera flies an elaborate path.

The Viewing Transformation

Pixar Tech Memo 84

15

Camera() is the fanciest of the three routines. The point xr yr zr 1 is any
convenient reference point. The vector xn yn zn 1 defines the ViewNormal.
The vector xup yup zup 1 defines ViewUp. In this case ViewUp is not neces-
sarily perpendicular to ViewNormal, as permitted by the view spec. The View-
Point is located distance deye from reference point along and in the direction of
the ViewNormal.

Window() computes the view window from the left, right, top, and bottom
positions of its edges. Hence it is more general than Perspective(), allowing non-
centered windows.

Notice that none of the interfaces above fully utilize the view spec. The com-
bination of Camera() and Window() comes closest, lacking only the capability of
specifying a view plane distinct from the near plane.

The Core recommendation for an interface is more “gut-level” with routines
such as the following which are self-explanatory:

SetViewPoint(x, y, z)
SetViewNormal(x, y, z)
SetViewUp(x, y, z)
SetViewDistance(d)
SetViewDepth(near, far)
SetWindow(cu, cv, su, sv)
SetProjection(type)

For each of these routines there is a corresponding inquiry routine such as In-
quireViewPoint(px, py, pz) where px, py, and pz are the addresses of variable to be
filled with the current coordinates of the ViewPoint.

The Core standard also has default values for all parameters. Here is a set of
defaults for ViewStructure:

ViewPoint: 0 0 0 (at world space origin)
ViewNormal: 0 1 0 (in conventional world space)
ViewUp: 0 0 1 (in conventional world space)
ViewDistance: 1 (45° full horizontal field of view)
NearDistance: 1 (view and near planes coincident)
FarDistance: 1e5 (larger than 64K but less than infinity)
WindowCenter: 0 0 (on axis)
WindowHalfsize: 0.41421356 0.31066017 (4/3 aspect ratio)
Projection: PERSPECTIVE

We have adopted a set of low-level routines, inquiry routines, and defaults
as part of our convention. Similarly, we have adopted low-level routines and de-
faults for the conventional display structures. For example, the raster display
structure defaults to

FullScreenMin: 0 0 0

The Viewing Transformation

Pixar Tech Memo 84

16

FullScreenMax: 511 487 65535 (assuming two 8-bit channels for z)
FullScreenAspectRatio: 1.3333333333
ScreenMin: 0 0 0
ScreenMax: 511 487 65535
ScreenNormal: 0 0 1
ScreenUp: 0 –1 0

And the calligraphic display structure would default to

FullScreenMin: -2048 –2048 0
FullScreenMax: 2047 2047 255
FullScreenAspectRatio: 1
ScreenMin: -2048 –2048 0
ScreenMax: 2047 2047 255
ScreenNormal: 0 0 -1
ScreenUp: 0 1 0

References
[CORE79]

Status Report of the Graphic Standards Planning Committee: Chapter 5: Viewing
Operations and Coordinate Transformations, Computer Graphics, Vol 13, No 3,
Aug 1979 (SIGGRAPH ’79).

[FOLVAN]
James D Foley and Andries Van Dam, Chapter 8: Viewing in Three Dimensions,
Fundamentals of Interactive Computer Graphics, Addison-Wesley Publish-
ing Company, Menlo Park, CA, 1982.

[MCHCAR]
James C Michener and Ingrid B Carlbom, Natural and Efficient Viewing Pa-
rameters, Computer Graphics, Vol 14, No 3, Jul 1980 (SIGGRAPH ’80), 238-
245.

Appendix A: Don’t Clip After Perspective
Perspective can be applied in two ways. The first is a 3-D to 2-D perspective

projection which maps all points, even those behind the eye, into a constant z
plane in front of the eye. If the view plane is at distance D from the eyepoint, or
ViewPoint, which is at the origin and looking out positive z, then the perspective
projection is accomplished by the operation

x y z
X
W

Y
W

Z
W

' ' ' = L
NM

O
QP

where
X Y Z W x y z= 1 Q .

Since we are particularly interested in the canonical view volume of Figure 2 for

which D
d
f

= ,

The Viewing Transformation

Pixar Tech Memo 84

17

Q =

L

N

MMMMM

O

Q

PPPPP

1 0 0 0

0 1 0 0

0 0 1

0 0 0 0

f
d

.

Regardless of x and y, the resulting z’ is D. So all points with negative z—i.e., all
points behind the eye—are mapped to points with positive z.

Matrix Q is easy to derive. Let x’ and y’ be the location in the view plane of
the projection of point x y z 1 . Thus the point and its projection lie on a line
collinear with the eyepoint. By similar right triangles,

′ = ′ =x
D

x
z

y
D

y
z

.

So

′ = ′ =x
xD
z

y
yD
z

.

Clearly, ′ =z D . But matrix Q times the given point, followed by a homogeneous
coordinate division, transforms the given point to ′ ′x y D 1 .

The second perspective method is a 3-D to 3-D mapping called the perspective
transformation which preserves z ordering of visible points and delays projection
into 2-D until a later step. See Appendix B for derivation of the perspective trans-
formation matrix P. Clipping of lines that pass from before the eye to behind the
eye becomes tricky, although not impossible as in the perspective projection case.
It can be shown that P maps points behind the eye into points beyond the far
clipping plane. In particular, for the canonical viewing volume, point
x y z 1 is mapped by P into a point with

′ =
−

F
HG

I
KJ +F
HG

I
KJz

f
f n

n
f

z1 .

Thus ′ >z 1 for z < 0 . So the endpoints of a line passing from a visible point to a
point behind the eye transform into two points which, if naively connected, form
a transformed line segment which is not correct. If care is exercised (see
[BLINWL] for details), the two points may be connected by passing through in-
finity to get the correct line segment. It is probably best simply to have clipped
before encountering this problem and hence avoiding it.

Of course, P and Q must give the same results in x and y (to within a scale

factor d
f

 for the canonical viewing volume).

Reference
[BLINWL]

James C Blinn and Martin E Newell, Clipping Using Homogeneous Coordinates,
Computer Graphics, Vol 12, No 3, Jul 1978 (SIGGRAPH ’78), 245-251.

The Viewing Transformation

Pixar Tech Memo 84

18

Appendix B: Perspective Matrix Derivation
To derive the perspective transformation matrix P for the canonical view

volume, we want to solve for the 16 elements of

P =

L

N

MMMM

O

Q

PPPP

a e i m

b f j n

c g k o

d h l p

.

One laborious method is to derive a set of simultaneous equations which deter-
mine P from the known mappings of several points—e.g., from the eight corner
mappings: 1 1 1 to 1 1 1 , ..., z z zmin min min to 1 1 0 , Another
method is based on the observation that P will induce only linear size changes in
planes of constant z—no nonlinear perspective distortion. So the far plane face is
unchanged by P, implying (see Figure 9)

ax by c d Wx+ + + =
for some homogeneous coordinate W and all x and y in the face. Thus

a W b d c= = = −0
Similarly, the other three relationships yield

e i j m n f W h g k l o p W= = = = = = = − + = + =0 .
So at this step P has form:

P =

− − − −

L

N

MMMM

O

Q

PPPP

W

W

c g k o

c g W k W o

0 0 0

0 0 0
.

The z z= min face goes through a scale change by 1
zmin

 in x and y when mapped by

P into z = 0 . Hence

Wx c z
W x
z

+ − = ′
()min

min

1

for some homogeneous coordinate W’. Thus
c W Wz= ′ =0 min .

Similarly, from the other three relationships

g k
W
z

o W= =
−

=0
1 min

.

So

The Viewing Transformation

Pixar Tech Memo 84

19

P = −
−

−

L

N

MMMMMM

O

Q

PPPPPP

W

W
W
z

W

z W
z

0 0 0

0 0 0

0 0
1

0 0
1

0

min

min

min

.

Since the W divides out in the homogeneous coordinate division, it may be set to
1.

Appendix C: Coordinate Transformations
This is a quick review of the basic theory. We are given points in a coordinate

system with orthogonal axes x, y, and z. We wish to express these points in terms
of another orthogonal coordinate system—that is, we wish to perform a coordi-
nate transformation on the points. Suppose the unit vectors defining the three
new axes are u, v, and n.

For example, u might be the vector 1 0 0 in the xyz space; v might be
0 0 1 ; and n might be 0 1 0 . These are orthogonal unit vectors. At Lucas-

film, conventional world space is the right-handed xyz system with z up, x right,
and y in. (Think of a map of the country with x east, y north, and z up.) Using this
as an example, u lies along the x axis, v lies along the z axis, and n lies along the y
axis. So the uvn system is left-handed with u left, v up, and n in. This is the eye
space definition at Lucasfilm.

We want to find a matrix B3 such that uB3 1 0 0= . Thus the point u is
transformed by B3 into a principal axis. Similarly, we want vB3 0 1 0= and
nB3 0 0 1= . This can be expressed by the following matrix equation:

u

v

n

B I
L

N
MMM

O

Q
PPP

=3 .

Therefore
u

v

n

B
L

N
MMM

O

Q
PPP

= −
3

1 .

Hence

B

u

v

n
3

1

=
L

N
MMM

O

Q
PPP

−

.

Since u, v, and n are orthogonal unit vectors,

The Viewing Transformation

Pixar Tech Memo 84

20

u

v

n

u v n
L

N
MMM

O

Q
PPP

=

−1

T T T

as used in the text.
Thus, for the example above,

B3

1 0 0

0 0 1

0 1 0

=
L

N
MMM

O

Q
PPP

.

Another example is the transformation from NDC to “upside down” NDC,
convenient for screen mappings for raster displays which typically have y posi-
tive down instead of up. Thus u in terms of NDC space is 1 0 0 ,
v = −0 1 0 , and n = 0 0 1 . Therefore

J3

1 0 0

0 1 0

0 0 1
r = −

L

N
MMM

O

Q
PPP

is the desired coordinate transformation. Similarly, for our calligraphic display u
is 1 0 0 , v = 0 1 0 , and n = −0 0 1 . Therefore

J3

1 0 0

0 1 0

0 0 1
c =

−

L

N
MMM

O

Q
PPP

.

Appendix D: Far Plane at Infinity
A far plane at infinity causes problems with the viewing transformation as

presented in the text. The normalizing transformation N maps all finite points
into the point 0 0 0 1 . In particular, N R becomes all 0’s except for
N R[][]3 3 1= . So the canonical viewing frustum is useless in this case. Here we
consider changes to the viewing transformation which make it useful for the in-
teresting case of a far plane at infinity.

The main idea, as before, is to map an arbitrary frustum to one convenient
for clipping. The “canonical” frustum we recommend here is the same as before
for x and y but leaves an infinite far plane at infinity. The previous derivation
mapped the far plane into the z = 1 plane. This one maps the view plane into the
z = 1 plane and the viewing window into a square from –1 to 1 in both x and y.
So the canonical infinite view frustum is bounded by the same planes top, bottom,
left, and right as with the (noninfinite) canonical view frustum, but the far face is
at infinity and the view window now occupies the space occupied by the far face
in the noninfinite case.

The Viewing Transformation

Pixar Tech Memo 84

21

An argument parallel to that for deriving D says that the desired mapping

for the view plane in the canonical infinite view frustum scales x by 1
su

, y by 1
sv

,

and z by 1
d

. So

D∞ =

L

N

MMMMMMM

O

Q

PPPPPPP

1
0 0 0

0
1

0 0

0 0
1

0

0 0 0 1

s

s

d

u

v
.

Hence

N R

u

v

u

u

v

v

s

s
c

s d
c

s d d

∞
=

− −

L

N

MMMMMMMM

O

Q

PPPPPPPP

1
0 0 0

0
1

0 0

1
0

0 0 0 1

.

A, B, and C are unaffected, so N L is unaffected. The decomposition of
N N N∞ =

∞L R into matrices partitioned by view parameter is the same as before
with

E I∞ = ,

F∞ =

L

N

MMMMM

O

Q

PPPPP

1 0 1 1

0 1 0 0

0 0
1

0

0 0 0 0
d

,

and G and H unchanged.
The perspective projection is derived just as in Appendix A but in this case

D = 1 so

Q ∞ =

L

N

MMMM

O

Q

PPPP

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

.

The perspective transformation now must map the canonical infinite view
frustum onto NDC. A 2-step derivation yields the transformation: First, derive a
mapping which maps zmin into 0 and leave z = 1 unchanged. An argument paral-

The Viewing Transformation

Pixar Tech Memo 84

22

lel that of Appendix B shows that the desired mapping is the same as P in its zmin
formulation, but since

z
n
dmin =

in this formulation,

′ =
−

−
−

L

N

MMMMMM

O

Q

PPPPPP

∞P

1 0 0 0

0 1 0 0

0 0 1

0 0 0

d
d n

n
d n

.

This matrix maps the infinite far plane into z
d

d n
=

−
. So a prescaling of z by

d n
d
− gives the desired mapping to NDC:

P∞ =
−

L

N

MMMMM

O

Q

PPPPP

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0
n

d

.

P∞ and Q ∞ give identical results in x and y so
R I∞ = .

The screen mapping portion of the viewing transformation is not affected.
The case of orthographic projection may be treated similarly. The canonical

viewing volume is extended to infinity as for the perspective projection case and
the normalization matrix is reworked to map the near plane to z = 0 and the
view plane to z = 1. The result is

NoR

u

v

u

u

v

v

s

s

d n
c
s

c
s

n
d n

∞
=

−
− − −

−

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

1
0 0 0

0
1

0 0

0 0
1

0

1

.

Whereas d did not figure in the orthographic transformation at all in the finite
case, it takes on a principal role here. The case d n≡ is treated specially. It suf-
fices to set the [2][2] element to 1 and the [3][2] element to –n. This maps the near
plane to z = 0 and the view plane to z = 1 but leaves the far plane at infinity. No-
tice that the screen mapping in this case is not valid for z. Its z component may be

The Viewing Transformation

Pixar Tech Memo 84

23

thought of as a linear scale and translate, however. The Zmax factor becomes a
scaling control. The minimum z will be Zmin , however.

Apply
normalizing

transformation

Clip against
canonical

view
volume

Transform
view volume

into 3D
viewport

3D image
transformation

Orth-
graphic

projection
into 2D

Transform into
physical
device

coordinates

World coordinates

Viewing coordinates
Normalized device
coordinates (3D)

Normalized device
coordinates (2D)

Figure 1. 3D viewing process extended to include 3D image transformations (from [FOLVAN]).

Figure 2. Normalized clipping region for perspective projection.
0 <_ | X c|,|Y c| <_ Z c; Front <_ Z c <_ 1. (from [MCHCAR]).

Yc

Xc

Zc

Back: Zc = 1

(1, -1, 1)

(1, 1, 1)

(-1, 1, 1)

Zc = YcWindow

Front

The Viewing Transformation

Pixar Tech Memo 84

24

Figure 3. Normalized clipping region for parallel projection.
-1 <_ Xc,Yc <_ 1 and 0 <_ Zc <_ 1. (from [MCHCAR])

Yc

Zc

Xc

(1, 1, 1)

(-1, 1, 1)

(-1, 1, 0)

(1, -1, 1)

(-1, -1, 0)

(1, -1, 0)

Figure 4. uv-system in the view plane (from [FOLVAN]).

VRP

View
plane

VUP

VPN

u

v

The Viewing Transformation

Pixar Tech Memo 84

25

Figure 5. Window in uv-coordinates (from [FOLVAN]).

VRP

View
plane

VPN

u

v
(umax, vmax)

(umin, vmin)

Figure 6. Semi-infinite pyramid view volume for perspective projection
(from [FOLVAN]).

VRP

View
plane

VPN

u

v

Center of
projection

View
volume

The Viewing Transformation

Pixar Tech Memo 84

26

u

v

VPN

VRP

View
plane

Center of
projection

View
volume

Figure 7. Another semi-infinite pyramid view volume for perspective
projection (from [FOLVAN]).

F B

VRP

VPN
Front
clipping
plane

View
plane

Back
clipping
plane

Figure 8. Truncated view volume (from [FOLVAN]).

The Viewing Transformation

Pixar Tech Memo 84

27

Figure 9. Side views of normalized perspective view volume (a) before and (b)
after application of matrix P (from [FOLVAN]).

Yv

Zv

Center of
projection
at
negative
infinity

Projection
plane

D'

C'B'

A'

(1, -1)

(1, 1)

Yv

Zv

Projection
plane

Center of
projection

D

C

A

B

(1, 1)

(1, -1)

Zv, min

(a) (b)

Figure 10. The complete viewing transformation.

T N P X S

S'Q

q p pN pNP pNPX pNPXS

pN pNQ pNQS'

floor
hidden
surface

homo
divideclip

homo
divide

(if
necesary) short

cut

world
space

model
xform

world
space

normal-
izing
xform

canonical
view

frustum

perspec-
tive

xform
NDC

image
xform NDC

screen
map

image
space

