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SUMMARY AND PURPOSE 

Reliability and Availability are key attributes of technical systems. Methods of quantifying these attributes are thus 
essential during all phases of system lifecycle. Data (measurement)-driven methods are suitable for components or 
subsystems but, for the system as a whole, model-driven methods are more desirable. Simulative solution or analytic-
numeric solution of the models are two major alternatives. In this tutorial, we explore model-driven methods with 
analytic-numeric solution. Non-state-space, state space, hierarchical and fixed-point iterative methods are explored 
using real-world examples.  Challenges faced by such modeling endeavors and potential solutions are described as also 
one of the software packages used for such modeling exercises.  
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1. INTRODUCTION 

  Modern life heavily relies on man-made systems that are 

expected to be reliable. Many high-tech cyber systems are found 

wanting since their failures are not so uncommon. Such failures 

and consequent downtimes lead to economic losses, to a loss of 

reputation and to even loss of lives. To ameliorate the situation 

many methods are designed to reduce failure occurrences and 

resultant downtimes. In order to gauge the effectiveness of these 

improvement methods, scalable and high-fidelity techniques of 

reliability and availability assessment are needed.    

 

  This tutorial discusses the techniques that have been utilized 

for reliability and availability assessment in practice.  

Assessment methods can be divided into measurement-driven 

(or data-driven) vs. model-driven methods (Figure 1). Data-

driven methods are suitable for small subsystems while model-

driven methods are appropriate for large systems. Using model-

driven methods, we can derive the dynamic behavior of a system 

consisting of many components using first principles (of 

probability theory) rather than from measurements. In practice, 

these two approaches are combined together so that subsystem 

or component behavior is derived using data-driven methods 

while the system behavior is derived using model-driven 

methods .  

 

 

 

 

 

 

 

 

 

Figure 1. Reliability/Availability assessment methods 

 

  This tutorial focuses on model-driven methods. Models can be  

 

Figure 2. The overall modeling process 

 

solved using discrete-event simulation or using analytic-numeric 

techniques. Some simple models can be solved analytically in a 

closed-form while a much larger set of models can be dealt with 

by a numerical solution of their underlying equations. 

Distinction between analytic-numeric solution vs. discrete-event 

simulation-based solution ought to be noted. We believe that 

simulative solution and analytic-numeric solutions should be 

judiciously combined in order to solve complex system models. 

This tutorial is on analytic-numeric methods providing an 

overview of a recently published book by the authors [1]. 

 

  Our approach to exposing the methods is example-based. The 

examples are chosen to be those of real systems that we have 

ourselves analyzed for some companies. Overall modeling 

process that could be used is depicted in Figure 2. 

 

 

Figure 3. Solution techniques 

 

  Model types that we discuss include non-state-space ones such 

as Reliability Block Diagrams (RBD), Fault Trees (with and 

without repeated events) and reliability graphs.  State space 

model types, specifically continuous-time Markov chains and 

Markov reward models are commonly utilized. Multi-level 

models that judiciously combine state space and non-state-space 

methods will be seen to have the scalability and fidelity needed 

for capturing real system behavior. Depending on the 

application, a model may be solved for its long-term (steady-

state) behavior or its time-dependent or transient behavior. 

Solution types for such models are classified in Figure 3 [1,12]. 

Software packages that are used in solving the examples of this 

tutorial are SHARPE [2,3] and SPNP [4,5]. 

 

2. NON-STATE-SPACE METHODS 

  Several traditional methods for the analysis of system 

reliability and availability can be classified under the umbrella 

of non-state-space (sometimes called combinatorial) methods:  

• Reliability Block Diagrams (RBD); 

• Network reliability or Reliability graphs (RelGraph); 

• Fault Trees 

  The simplest paradigm for reliability/availability is the (series-

parallel) reliability block diagram (RBD). These are commonly 

used in computer and communications industry, are easy to use 

and assuming statistical independence, simple algorithms are 

available to solve very large RBDs. Reliabilities (availabilities) 

multiply for blocks in series while un-reliabilities (un-

availabilities) multiply for blocks in parallel. Efficient 

algorithms for k-out-of-n blocks are also available, both in the  

case of statistically identical blocks and non-identical blocks [1]. 

Besides system reliability at time t, system mean time to failure, 

and system availability (steady-state and instantaneous), 

importance measures can also be computed so as to point out 

critical components (bottlenecks) [1].  
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Figure 4. High Availability Platform from Sun Microsystems 

 

  High availability requirement in telecommunication systems 

is usually more stringent than most other sectors of industry. 

The carrier grade platform from SUN Microsystems requires a 

“five nines and better” availability.  From the availability point 

of view, the top-level architecture of a typical carrier grade 

platform was modeled in [6] as a reliability block diagram 

consisting of series, parallel, and k-out-of-n subsystems, as 

shown in Figure 4. The SCSI series block is expanded as in the 

inset of Figure 4. 

 

  Series-parallel structure is often violated in practice. Non-

series-parallel block diagrams are often cast as s-t connectedness 

problem or as network reliability problem or just relgraph in 

SHARPE. The price to be paid for this additional modeling 

power is the increased complexity of solution methods. Known 

solution methods are: factoring (or conditioning), finding all 

minpaths followed by the use of one of many sum-of-disjoint-

products (SDP) algorithms, the use of binary decision diagrams 

(BDD) or the use of Monte-Carlo simulation. SDP and BDD 

based algorithms have been implemented in the SHARPE 

software package [2,3]. Nevertheless, real systems pose a 

challenge to these algorithms. For instance, the reliability of the 

current return network subsystem of Boeing 787 was modeled 

as a relgraph shown in Figure 5. However, the number of 

minpaths was estimated to be over 4 trillion.  

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Boeing Relgraph Example 

 

 

  To solve the model, for the purpose of FAA certification, a new 

bounding algorithm was developed, was patented and published 

in a journal [7]. Table 1 reports the results showing that the upper 

and lower bounds to the s-t reliability were close enough, with a 

very small number of minpaths and mincuts selected for the 

computation. The computation time was very short for this 

otherwise intractable problem. 

 

Table 1 - Unreliability upper/lower bounds  

 

runtime 20 seconds  120 seconds  900 seconds  

up bound 1.146036 10-8 1.081432 10-8 1.025519 10-8 

low bound 1.019995 10-8 1.019995 10-8 1.019995 10-8 

#minpaths 28 29 33 

#mincuts 113 113 113 

 

  Table 2 shows a comparison of SDP and BDD methods for 

various benchmark networks of increasing complexity. The 

different BDD columns show the effect of node ordering on the 

computational time. Note that benchmark networks used here 

are not shown for the sake of brevity. Note also that the 

bounding method is not utilized in the comparison table. 

 

Table 2 – Comparison of SDP and BDD with various orderings 

 

 

 

 

 

 

 

 

 

 

 

   In aerospace, chemical and nuclear industry, engineers use 

fault trees to capture the conditions under which system fails. 

These Boolean conditions are encoded into a tree with AND 

gates, OR gates and k-out-of-n gates as internal nodes while 

leaf nodes represent component failures and the top node 

indicates system failure. 

    Fault trees without repeated events are equivalent to RBDs 

while those with repeated events are more powerful [1,2,8]. 

Solution techniques for fault trees with repeated events are the 

same as those for the network reliability problem discussed in 

the previous paragraph [1]. Fault trees with several thousand 

components can be solved with relative ease. Figure 6 shows a 

FT for a GE Equipment Ventilation System. Notice that leaves 

drawn as circles are basic events, while inverted triangles 

represent repeated events.  Assuming that all the events have a 

failure probability equal to q=0.001, the SHARPE input file and 

the SHARPE output file are reported in Figure 7 on the left and 

on the right-hand side, respectively. In this example, SHARPE 

is asked to compute the Top Event probability (QTE = 1.0945e-

02) as well as the list of the mincuts. We could ask for 

importance measures as well as a closed form expression of top 

event probability [1,3]. By assigning failure rates for each event, 
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we could ask for the time dependent failure probability of the 

system. Many other possibilities exist. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Fault Tree Model Equipment Ventilation System 

 

 

 

 

 

 

 

 

 

 

Figure 7.  SHARPE Input/Output file for Ventilation System 

 

  Table 3 presents the computation time for FT models with 

repeated events as the total number of nodes increases 

assuming a specific fault tree that we do not show here.    

 

Table 3 – Complexity comparison of 3 computation techniques 

 

 

 

 

 

 

 

 

 

 

  By assigning failure rates to components, system reliability at 

time t and the mean time to system failure can be computed. 

Time to failure distribution other than exponential (e.g., 

Weibull) can be used. Furthermore, by assigning failure rate 

and repair rate to each component, steady state and 

instantaneous availability can be computed (assuming 

independence in repair besides failure independence).  

 

  Fault trees have been extended to non-coherent gates such as 

NOT gates, to multi-state components [9], phased mission 

systems [10] and with dynamic gates [11].  SHARPE fault trees 

allow NOT gate, multi-state components and phased-mission 

systems. Dynamic gates are not explicitly included in SHARPE 

but can easily implemented since fault trees, Markov chains 

and hierarchical modeling are provided [1].  

3. STATE SPACE METHODS 

  As stated in the last Section, non-state-space models with 

thousands of components can be solved without generating 

their underlying state space by making the independence 

assumption. But in practice, dependencies do exist among 

components. We then need to resort to state space models such 

as (homogeneous) continuous-time homogeneous Markov 

chains (CTMC). Markov models have been used to capture 

dynamic redundancy, imperfect coverage, escalated levels of 

recovery, concurrency, contention for resources, combined 

performance and reliability/availability and survivability 

[1,12]. Markov availability model will have no absorbing states 

(Figure 8) while Markov reliability models will have one or 

more absorbing states (Figure 10). Markov Models can be 

solved for steady state, transient and cumulative transient 

behavior according to the following equations [12,1]: 

 

Steady state 𝝅𝑸 = 0      with     ∑ π= 1 

Transient 

𝑑𝝅(𝑡)/𝑑𝑡 = 𝝅(𝑡)  𝑸     given    𝝅(0) 

Cumulative 

Transient 𝑑𝒃(𝑡)/𝑑𝑡 = 𝒃(𝑡)  𝑸 + 𝝅(0) 

where 𝑸  is the infinitesimal generator matrix of the CTMC,  

𝝅(𝑡)  is the state probability vector at time t,  𝝅(0) is the initial 

state probability vector,  𝝅 = 𝐥𝐢𝐦𝒕→∞ 𝝅(𝑡)  is the steady state 

probability vector and  𝒃(𝑡) = ∫ 𝝅(𝑢) 𝑑𝑢
𝑡

0
  is the vector of the 

expected state occupancy times in the interval from 0 and t. 

3.1 CTMC Availability models 

  The system availability (or instantaneous, point, or transient 

availability) is defined as the probability that at time t the 

system is in an up state:   
  

𝐴(𝑡)  =  𝑃 {𝑠𝑦𝑠𝑡𝑒𝑚 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑎𝑡 𝑡} 
 

Steady-state availability (𝐴𝑠𝑠) or just availability is the long-

term probability that the system is available when requested: 
 

𝐴𝑠𝑠 = lim
𝑡→∞

𝐴(𝑡) =  
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 

 

Where MTTF is the system mean time to failure and MTTR is 

the system mean time to recovery. When applied to a single 

component, the above equation holds without a distributional 

assumption. For a complex system with redundancy, the 

equation holds if we use “equivalent” MTTF and “equivalent” 

MTTR [1,12]. 

  The availability model of the Linux operating system used in 

the IBM SIP WebSphere was presented in [13] and is shown in 

Figure 8.  From the UP state, the model enters the down state 
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DN with failure rate 𝑂𝑆. After failure detection, with a mean 

time of 1/𝛿𝑂𝑆, the system enters the failure detected state DT.   

 

 

 

Figure 8.  CTMC availability model of Linux OS 

The OS is then rebooted with the mean time to reboot given by 

1/
𝑂𝑆

.With probability 𝑏𝑂𝑆 the reboot is successful, and 

system returns to UP state. However, with probability 1 − 

𝑏𝑂𝑆  the reboot is unsuccessful, and the system enters the DW 

state where a repairperson is summoned. The travel time of the 

repairperson is assumed to be exponentially distributed with 

rate 𝑆𝑃 . The system then moves to state RP. The repair takes a 

mean time of 1/
𝑂𝑆

, and after its completion, the system 

returns to the UP state.  

 

 

 

 

Figure 9.  SHARPE Input file for the CTMC of Figure 8 

Solving the steady state balance equations, a closed-form 

solution for the steady state availability of the OS is obtained in 

this case due to the simplicity of the Markov chain. Thus, 

𝐴𝑠𝑠 =  𝜋𝑈𝑃: 

𝐴𝑠𝑠 =
1

𝑂𝑆
  [

1

𝑂𝑆
+  

1

𝛿𝑂𝑆
+

1

𝑂𝑆

+ (1 − 𝑏𝑂𝑆)(
1

𝑆𝑃
+

1

𝑂𝑆

)]
−1

 

  We can alternatively obtain a numerical solution of the 

underlying equations by using a software package such as 

SHARPE. Either graphical or textual input can be employed. 

The SHARPE textual input file modeling the CTMC of Figure 

8 is shown in Figure 9.  The Steady state availability is 

computed using the command expr prob (LinuxOS,1)and 

with the assigned numerical values for parameters, the result is 

𝐴𝑠𝑠 =  0.99963. 

 

3.2 CTMC Reliability models 

  CTMC for reliability models have one or more absorbing 

states and the reliability at time t is defined as the probability 

that the system is continuously working during the interval (0-
t]. Further, since in a reliability model the system down state is 

an absorbing state, the MTTF can be calculated as the mean 

time to absorption in the corresponding CTMC model [1,2,12]. 

The reliability model for the Linux operating system used in 

the IBM is shown in Figure 10. The repair transition from state  

Figure 10.  CTMC reliability model of Linux OS 

RP to state UP and the transition from state DW are removed, 

that is, the down state reached from the UP state, is made 

absorbing.   

  In this case, the model is simple enough so that a closed-form 

solution can be obtained by hand (or using Mathematica) by 

setting up and solving the underlying Kolmogorov differential 

equations. Alternatively, a numerical solution of the underlying 

equations can be obtained using SHARPE. The SHARPE 

textual input file for the reliability model of Figure 10 is shown 

in Figure 11.   Note that in this case, since the CTMC is not 

irreducible, an initial probability vector must be specified.   

Figure 11.  SHARPE Input file for the CTMC of Figure 9 

The system reliability at time t is defined in this case as 𝑅(𝑡) =
𝜋𝑈𝑃(𝑡) and is computed from t=0 to t=10000 in steps of 2000. 
As noted earlier, the MTTF is defined as the mean time to 

absorption and is computed using the SHARPE command 

expr mean(LinuxOS). With the assigned numerical values 

the result is MTTF=40012 hr.   

The CTMC of a reliability model can be, but need not be, 

acyclic, as in the case of Figure 10. If there is no component 

level repair (recovery) then the CTMC will be acyclic but if 

there is component level repair (but no repair after system 

failure) then the CTMC will have cycles. However, it will one 

or more absorbing states. System down states will be absorbing 

states.  

  Reliability modeling techniques have wide applications in 

different technological fields and have been proposed to 

provide new frontiers in predicting health care outcomes. With 

the rise in quantifiable approaches to health care, lessons from 

reliability modeling may well provide new ways of improving 

patient healthcare.  Describing the development of conditions 

leading to organ system failure provides motivation for 

quantifying disease progression.  As an example, a simple 

model for progressive kidney diseases leading to renal failure is 

reported in Figure 12 [14] where five discrete conditions are 

enumerated in keeping with clinical classification of kidney 

function: 
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Figure 12.  Markov model of renal disease progression [14] 

1 Healthy: Normal renal function, 

2 CKD: Chronic Kidney Disease without renal failure, 

3 ESRD: End-Stage Renal Disease 

4 Transplant: patients who have received a transplant, 

5 Deceased 

  The parameter values, used in solving the model of Figure 12, 

are reported in Table 4.  These values are estimated for a 65- 

year old Medicare patient, and are based on the latest available 

statistics from United States Renal Data System (USRDS) 

annual report [15]. 

Table 4 - Parameter estimates for a 65-year medicare patient 

 

 

 

 

The model of Figure 12 is solved for measures such as survival 

rate and expected cost incurred by a patient in a one-year 

interval [14].   

  Efficient algorithms are available for solving Markov chains 

with several million states [16,17,18], both in steady-state and 

in transient regime. Furthermore, measures of interest such as 

reliability, availability, performability, survivability etc. can be 

computed by means of reward rate assignments to the states of 

the CTMC [1,12]. Derivatives (sensitivity functions) of the 

measures of interest with respect to input parameters can also 

be computed to help detect bottlenecks [19,20,21]. 

Nevertheless, the generation, storage and solution of real-life-

system Markov models still poses challenges. Higher level 

formalisms such as those based on stochastic Petri nets and 

their variants [22,4,23] have been used to automate the 

generation, storage and the solution of large state spaces [24].  

  An example of the use stochastic reward net to model the 

availability of an Infrastructure-as-a-Service (IaaS) cloud is 

shown in Figure 13 [25]. To reduce power usage costs, physical 

machines (PMs) are divided into three pools: Hot pool (high 

performance and high power usage), Warm pool (medium 

performance and medium power usage) and Cold pool (lowest 

performance and lowest power usage).  PMs may fail and get 

repaired. A minimum number of operational hot PMs is 

required for the system to function but PMs in other pools may 

be temporarily assigned to the hot pool in order to maintain 

system operation. Upon repair, PMs migrate back to their 

original pool. Migration creates dependence among the pools. 

Figure 13. SRN availability model of IaaS Cloud 

 

  A monolithic CTMC is too large to construct by hand. We use 

a high-level formalism of stochastic Petri net known as 

Stochastic Reward Net (SRN) [23,24].  An SRN model can be 

automatically converted into an underlying Markov (reward) 

model that is solved numerically for the measures of interest 

such as expected downtime, steady-state availability, 

reliability, sensitivities of these measures.  In Figure 13, place 

𝑃ℎ initially contains 𝑛ℎ PMs of the hot pool, 𝑃𝑤 contains 𝑛𝑤 

PMs of the warm pool and 𝑃𝑐 contains 𝑛𝑐 PMs of the cold pool.  

Assuming the number of PMs in each pool is identical and 

equal to n, the number of states for the monolithic model of 

Figure 13, is reported in the second column of Table 5.  From 

this table, it is clear that this approach based merely on SRN, 

that we call largeness tolerance, soon reaches its limits as the 

time needed for the generation and storage of the state space 

becomes prohibitively large for real systems. 

4. HIERARCHY & FIXED-POINT ITERATION 

  In order to avoid large models as is the case in a monolithic 

Markov (or generally state space) model, we advocate the use 

of multi-level models in which the modeling power of state 

space models and efficiency of non-state-space models are 

combined together (Figure 14). 

 

Figure 14. Analytic Modeling Taxonomy 
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  Since a single monolithic model is never generated and stored 

in this approach, this is largeness avoidance in contrast with the 

use of largeness tolerance (recall SRN and related modeling 

paradigms) wherein the underlying large model is generated 

and stored. In multi-level modeling each of the model is solved 

and results are conveyed to other relevant models to use as 

their input parameters. This transmission of results of one sub-

model as input parameters to other sub-models is depicted as a 

graph that has been called an import graph.  

 

  Consider for instance, the availability model of the SUN 

Microsystem whose top-level RBD availability model was 

shown in Figure 4. Each block of the RBD of Figure 4 is a 

complex sub-system that was modeled separately using the 

appropriate formalism in order to compute the block steady-

state availability. In the present case, the subsystems were 

modeled as Markov chains to cater for dependence within each 

subsystem. The block availability is then rolled up to the higher 

level RBD model to compute the system steady state 

availability.  The import graph for this model is shown in 

Figure 15. 

 

 

 

 

 

 

 

 

 

 

Figure 15. Import graph for the High Availability Platform 

from Sun Microsystems [6] 

 

The import graph in this case is acyclic. We can then carry out 

a topological sort of the graph resulting in a linear order 

specifying the order in which the sub-models are to be solved 

and the result rolled up to the hierarchy.  

 

  As the next example we return to the IaaS cloud availability 

model and improve its scalability. The monolithic SRN model 

of Figure 13 is decomposed into three sub-models to describe 

separately the behavior of three pools [25] while taking into 

account their mutual dependencies by means parameter 

passing.  The three sub-models are shown in Figure 16.  Its 

import graph is shown in Figure 17 indicating the input 

parameters and output measures that are exchanged among sub-

models to obtain the overall model solution. Import graphs 

such as the one of Figure 17 are not acyclic and hence the 

solution to the overall problem can be set up as a fixed-point 

problem. Such problems can be solved iteratively by successive 

substitution with some initial starting point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Decomposed SRN Availability model of IaaS Cloud 

 

  Many mathematical issues arise such as the existence of the 

fixed point, the uniqueness of the fixed-point, the rate of 

convergence, accuracy and scalability. Except for the existence 

of the fixed-point [26], all other issues are open for 

investigation. Nevertheless, the method has been successfully 

utilized on many real problems [1]. 

 

 

 

 

 

 

 

 

Figure 17. Import graph describing sub-model interactions 

 

Table 5 shows the effect of the decomposition method (which 

is also known as interacting sub-models method), comparing 

the number of states of the monolithic model (column 2) with 

the number of states of the interacting sub-models (column 3). 

 

Table 5 – Comparison of monolithic vs decomposed model 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are many more examples of this type of multi-level 

models in [1,2,13, 27,28,29,30,31]. 
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5. RELAXING THE EXPONENTIAL ASSUMPTION 

  One standard complain about the use of homogeneous 

Markov chains is the ubiquitous assumption of all event times 

being exponentially distributed. There are several known 

paradigms that can remove this assumption: non-homogeneous 

Markov chains, semi Markov and Markov regenerative 

process, and the use of phase-type expansions. All these 

techniques have been used and many examples are illustrated 

in [1].  

  Nevertheless, there is additional complexity in using non-

exponential techniques in practice, partly because the analytical 

solution is more complex but also because additional 

information about the non-exponential distributions that is then 

needed is often hard to come by. 

A flowchart comparing the modelling power of the different 

state space model-types is given in Figure 18 [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 - Flow chart comparing the modeling power of the 

different state space model types [1]. 

 

6. CONCLUSIONS 

  We have tried to provide an overview of known modeling 

techniques for the reliability and availability of complex 

systems. We believe that techniques and tools do exist to capture 

the behavior of current-day systems of moderate complexity. 

Nevertheless, higher and higher complexity is being designed 

into systems and hence the techniques must continue to evolve.  

Together with the largeness problem, the need for higher fidelity 

will require increasing use of non-exponential distributions, the 

need to properly combine performance, power and other 

measures of system effectiveness together with failure and 

recovery. Parameterization and validation of the models need to 

be further emphasized and aided. Tighter connection between 

data-driven and model-driven methods on the one hand, and, 

combining simulative solution with analytic-numeric solution 

on the other hand is desired. Validated models need to be 

maintained throughout the life of a system so that they can be 

used for tuning at operational time as well. Uncertainty in model 

parameters, so-called epistemic uncertainty, as opposed to 

aleatory uncertainty already incorporated in the models 

discussed here, needs to be accounted for in a high-fidelity 

assessment of reliability and availability [32]. For further 

discussion on these topics, we encourage the tutorial attendees 

to consult our book [1].  

 

Figure 19 – Chapters overview of the book 

  In Figure 19 we provide the chapters overview of the book [1], 

and in Figure 20 a classification of the considered modeling 

formalisms. We are currently preparing a solution manual and 

set of power point slides as education material to accompany the 

book. 
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