
 Trivedi & Bobbio: page i

Reliability and Availability Analysis in Practice

Kishor Trivedi

Andrea Bobbio

Kishor Trivedi
Duke University

Electrical and Computer Engineering

Durham, NC, 27708, USA

e-mail: ktrivedi@duke.edu

Andrea Bobbio
Università del Piemonte Orientale

DiSit – Sezione Informatica

15131 Alessandria (Italy)

e-mail: andrea.bobbio@uniupo.it

 Trivedi & Bobbio: page ii

SUMMARY AND PURPOSE

Reliability and Availability are key attributes of technical systems. Methods of quantifying these attributes are thus
essential during all phases of system lifecycle. Data (measurement)-driven methods are suitable for components or
subsystems but, for the system as a whole, model-driven methods are more desirable. Simulative solution or analytic-
numeric solution of the models are two major alternatives. In this tutorial, we explore model-driven methods with
analytic-numeric solution. Non-state-space, state space, hierarchical and fixed-point iterative methods are explored
using real-world examples. Challenges faced by such modeling endeavors and potential solutions are described as also
one of the software packages used for such modeling exercises.

Kishor Trivedi

Dr. Kishor Trivedi is a Professor of ECE and Computer Science at Duke University and a Life Fellow of IEEE. He is the
author of a well-known text entitled, Probability and Statistics with Reliability, Queuing and Computer Science
Applications. His latest book, co-authored with Andrea Bobbio, Reliability and Availability Engineering, is published
by Cambridge University Press in 2017. He has supervised 46 Ph.D. dissertations and has h-index 98 as per google
scholar. Recipient of IEEE Computer Society’s Technical Achievement Award for research on Software Aging and
Rejuvenation, he works closely with industry in carrying out reliability/availability analysis and in the development
and dissemination of modeling software packages such as SHARPE and SPNP.

Andrea Bobbio

Dr. Andrea Bobbio is a Professor of Computer Science at Università del Piemonte Orientale in Italy and Senior
Member of IEEE. He is co-author of the book, Reliability and Availability Engineering, published by Cambridge
University Press in 2017. His academic and professional activity has been mainly directed to the area of reliability
engineering and system reliability. He contributed to the study of heterogeneous modeling techniques for
dependable systems, ranging from combinatorial techniques to Bayesian belief networks, to state-space based
techniques, and fluid models. He has visited several important institutions and is the author of 200 papers in
international journals, conferences and workshops.

Table of contents

1. Introduction .. 1
2. Non-State-Space Methods ... 1
3. State Space Methods .. 3
4. Hierarchy and Fixed-Point Iteration .. 5
5. Relaxing the Exponential Assumption .. 7
6. Conclusions ... 7
7. References ... 7

 Trivedi & Bobbio: page 1

1. INTRODUCTION

 Modern life heavily relies on man-made systems that are

expected to be reliable. Many high-tech cyber systems are found

wanting since their failures are not so uncommon. Such failures

and consequent downtimes lead to economic losses, to a loss of

reputation and to even loss of lives. To ameliorate the situation

many methods are designed to reduce failure occurrences and

resultant downtimes. In order to gauge the effectiveness of these

improvement methods, scalable and high-fidelity techniques of

reliability and availability assessment are needed.

 This tutorial discusses the techniques that have been utilized

for reliability and availability assessment in practice.

Assessment methods can be divided into measurement-driven

(or data-driven) vs. model-driven methods (Figure 1). Data-

driven methods are suitable for small subsystems while model-

driven methods are appropriate for large systems. Using model-

driven methods, we can derive the dynamic behavior of a system

consisting of many components using first principles (of

probability theory) rather than from measurements. In practice,

these two approaches are combined together so that subsystem

or component behavior is derived using data-driven methods

while the system behavior is derived using model-driven

methods .

Figure 1. Reliability/Availability assessment methods

 This tutorial focuses on model-driven methods. Models can be

Figure 2. The overall modeling process

solved using discrete-event simulation or using analytic-numeric

techniques. Some simple models can be solved analytically in a

closed-form while a much larger set of models can be dealt with

by a numerical solution of their underlying equations.

Distinction between analytic-numeric solution vs. discrete-event

simulation-based solution ought to be noted. We believe that

simulative solution and analytic-numeric solutions should be

judiciously combined in order to solve complex system models.

This tutorial is on analytic-numeric methods providing an

overview of a recently published book by the authors [1].

 Our approach to exposing the methods is example-based. The

examples are chosen to be those of real systems that we have

ourselves analyzed for some companies. Overall modeling

process that could be used is depicted in Figure 2.

Figure 3. Solution techniques

 Model types that we discuss include non-state-space ones such

as Reliability Block Diagrams (RBD), Fault Trees (with and

without repeated events) and reliability graphs. State space

model types, specifically continuous-time Markov chains and

Markov reward models are commonly utilized. Multi-level

models that judiciously combine state space and non-state-space

methods will be seen to have the scalability and fidelity needed

for capturing real system behavior. Depending on the

application, a model may be solved for its long-term (steady-

state) behavior or its time-dependent or transient behavior.

Solution types for such models are classified in Figure 3 [1,12].

Software packages that are used in solving the examples of this

tutorial are SHARPE [2,3] and SPNP [4,5].

2. NON-STATE-SPACE METHODS

 Several traditional methods for the analysis of system

reliability and availability can be classified under the umbrella

of non-state-space (sometimes called combinatorial) methods:

• Reliability Block Diagrams (RBD);

• Network reliability or Reliability graphs (RelGraph);

• Fault Trees

 The simplest paradigm for reliability/availability is the (series-

parallel) reliability block diagram (RBD). These are commonly

used in computer and communications industry, are easy to use

and assuming statistical independence, simple algorithms are

available to solve very large RBDs. Reliabilities (availabilities)

multiply for blocks in series while un-reliabilities (un-

availabilities) multiply for blocks in parallel. Efficient

algorithms for k-out-of-n blocks are also available, both in the

case of statistically identical blocks and non-identical blocks [1].

Besides system reliability at time t, system mean time to failure,

and system availability (steady-state and instantaneous),

importance measures can also be computed so as to point out

critical components (bottlenecks) [1].

 Trivedi & Bobbio: page 2

Figure 4. High Availability Platform from Sun Microsystems

 High availability requirement in telecommunication systems

is usually more stringent than most other sectors of industry.

The carrier grade platform from SUN Microsystems requires a

“five nines and better” availability. From the availability point

of view, the top-level architecture of a typical carrier grade

platform was modeled in [6] as a reliability block diagram

consisting of series, parallel, and k-out-of-n subsystems, as

shown in Figure 4. The SCSI series block is expanded as in the

inset of Figure 4.

 Series-parallel structure is often violated in practice. Non-

series-parallel block diagrams are often cast as s-t connectedness

problem or as network reliability problem or just relgraph in

SHARPE. The price to be paid for this additional modeling

power is the increased complexity of solution methods. Known

solution methods are: factoring (or conditioning), finding all

minpaths followed by the use of one of many sum-of-disjoint-

products (SDP) algorithms, the use of binary decision diagrams

(BDD) or the use of Monte-Carlo simulation. SDP and BDD

based algorithms have been implemented in the SHARPE

software package [2,3]. Nevertheless, real systems pose a

challenge to these algorithms. For instance, the reliability of the

current return network subsystem of Boeing 787 was modeled

as a relgraph shown in Figure 5. However, the number of

minpaths was estimated to be over 4 trillion.

Figure 5. Boeing Relgraph Example

 To solve the model, for the purpose of FAA certification, a new

bounding algorithm was developed, was patented and published

in a journal [7]. Table 1 reports the results showing that the upper

and lower bounds to the s-t reliability were close enough, with a

very small number of minpaths and mincuts selected for the

computation. The computation time was very short for this

otherwise intractable problem.

Table 1 - Unreliability upper/lower bounds

runtime 20 seconds 120 seconds 900 seconds

up bound 1.146036 10-8 1.081432 10-8 1.025519 10-8

low bound 1.019995 10-8 1.019995 10-8 1.019995 10-8

#minpaths 28 29 33

#mincuts 113 113 113

 Table 2 shows a comparison of SDP and BDD methods for

various benchmark networks of increasing complexity. The

different BDD columns show the effect of node ordering on the

computational time. Note that benchmark networks used here

are not shown for the sake of brevity. Note also that the

bounding method is not utilized in the comparison table.

Table 2 – Comparison of SDP and BDD with various orderings

 In aerospace, chemical and nuclear industry, engineers use

fault trees to capture the conditions under which system fails.

These Boolean conditions are encoded into a tree with AND

gates, OR gates and k-out-of-n gates as internal nodes while

leaf nodes represent component failures and the top node

indicates system failure.

 Fault trees without repeated events are equivalent to RBDs

while those with repeated events are more powerful [1,2,8].

Solution techniques for fault trees with repeated events are the

same as those for the network reliability problem discussed in

the previous paragraph [1]. Fault trees with several thousand

components can be solved with relative ease. Figure 6 shows a

FT for a GE Equipment Ventilation System. Notice that leaves

drawn as circles are basic events, while inverted triangles

represent repeated events. Assuming that all the events have a

failure probability equal to q=0.001, the SHARPE input file and

the SHARPE output file are reported in Figure 7 on the left and

on the right-hand side, respectively. In this example, SHARPE

is asked to compute the Top Event probability (QTE = 1.0945e-

02) as well as the list of the mincuts. We could ask for

importance measures as well as a closed form expression of top

event probability [1,3]. By assigning failure rates for each event,

 Trivedi & Bobbio: page 3

we could ask for the time dependent failure probability of the

system. Many other possibilities exist.

Figure 6. Fault Tree Model Equipment Ventilation System

Figure 7. SHARPE Input/Output file for Ventilation System

 Table 3 presents the computation time for FT models with

repeated events as the total number of nodes increases

assuming a specific fault tree that we do not show here.

Table 3 – Complexity comparison of 3 computation techniques

 By assigning failure rates to components, system reliability at

time t and the mean time to system failure can be computed.

Time to failure distribution other than exponential (e.g.,

Weibull) can be used. Furthermore, by assigning failure rate

and repair rate to each component, steady state and

instantaneous availability can be computed (assuming

independence in repair besides failure independence).

 Fault trees have been extended to non-coherent gates such as

NOT gates, to multi-state components [9], phased mission

systems [10] and with dynamic gates [11]. SHARPE fault trees

allow NOT gate, multi-state components and phased-mission

systems. Dynamic gates are not explicitly included in SHARPE

but can easily implemented since fault trees, Markov chains

and hierarchical modeling are provided [1].

3. STATE SPACE METHODS

 As stated in the last Section, non-state-space models with

thousands of components can be solved without generating

their underlying state space by making the independence

assumption. But in practice, dependencies do exist among

components. We then need to resort to state space models such

as (homogeneous) continuous-time homogeneous Markov

chains (CTMC). Markov models have been used to capture

dynamic redundancy, imperfect coverage, escalated levels of

recovery, concurrency, contention for resources, combined

performance and reliability/availability and survivability

[1,12]. Markov availability model will have no absorbing states

(Figure 8) while Markov reliability models will have one or

more absorbing states (Figure 10). Markov Models can be

solved for steady state, transient and cumulative transient

behavior according to the following equations [12,1]:

Steady state 𝝅𝑸 = 0 with ∑ π= 1

Transient

𝑑𝝅(𝑡)/𝑑𝑡 = 𝝅(𝑡) 𝑸 given 𝝅(0)

Cumulative

Transient 𝑑𝒃(𝑡)/𝑑𝑡 = 𝒃(𝑡) 𝑸 + 𝝅(0)

where 𝑸 is the infinitesimal generator matrix of the CTMC,

𝝅(𝑡) is the state probability vector at time t, 𝝅(0) is the initial

state probability vector, 𝝅 = 𝐥𝐢𝐦𝒕→∞ 𝝅(𝑡) is the steady state

probability vector and 𝒃(𝑡) = ∫ 𝝅(𝑢) 𝑑𝑢
𝑡

0
 is the vector of the

expected state occupancy times in the interval from 0 and t.

3.1 CTMC Availability models

 The system availability (or instantaneous, point, or transient

availability) is defined as the probability that at time t the

system is in an up state:

𝐴(𝑡) = 𝑃 {𝑠𝑦𝑠𝑡𝑒𝑚 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑎𝑡 𝑡}

Steady-state availability (𝐴𝑠𝑠) or just availability is the long-

term probability that the system is available when requested:

𝐴𝑠𝑠 = lim
𝑡→∞

𝐴(𝑡) =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅

Where MTTF is the system mean time to failure and MTTR is

the system mean time to recovery. When applied to a single

component, the above equation holds without a distributional

assumption. For a complex system with redundancy, the

equation holds if we use “equivalent” MTTF and “equivalent”

MTTR [1,12].

 The availability model of the Linux operating system used in

the IBM SIP WebSphere was presented in [13] and is shown in

Figure 8. From the UP state, the model enters the down state

 Trivedi & Bobbio: page 4

DN with failure rate 𝑂𝑆. After failure detection, with a mean

time of 1/𝛿𝑂𝑆, the system enters the failure detected state DT.

Figure 8. CTMC availability model of Linux OS

The OS is then rebooted with the mean time to reboot given by

1/
𝑂𝑆

.With probability 𝑏𝑂𝑆 the reboot is successful, and

system returns to UP state. However, with probability 1 −

𝑏𝑂𝑆 the reboot is unsuccessful, and the system enters the DW

state where a repairperson is summoned. The travel time of the

repairperson is assumed to be exponentially distributed with

rate 𝑆𝑃 . The system then moves to state RP. The repair takes a

mean time of 1/
𝑂𝑆

, and after its completion, the system

returns to the UP state.

Figure 9. SHARPE Input file for the CTMC of Figure 8

Solving the steady state balance equations, a closed-form

solution for the steady state availability of the OS is obtained in

this case due to the simplicity of the Markov chain. Thus,

𝐴𝑠𝑠 = 𝜋𝑈𝑃:

𝐴𝑠𝑠 =
1

𝑂𝑆
 [

1

𝑂𝑆
+

1

𝛿𝑂𝑆
+

1

𝑂𝑆

+ (1 − 𝑏𝑂𝑆)(
1

𝑆𝑃
+

1

𝑂𝑆

)]
−1

 We can alternatively obtain a numerical solution of the

underlying equations by using a software package such as

SHARPE. Either graphical or textual input can be employed.

The SHARPE textual input file modeling the CTMC of Figure

8 is shown in Figure 9. The Steady state availability is

computed using the command expr prob (LinuxOS,1)and

with the assigned numerical values for parameters, the result is

𝐴𝑠𝑠 = 0.99963.

3.2 CTMC Reliability models

 CTMC for reliability models have one or more absorbing

states and the reliability at time t is defined as the probability

that the system is continuously working during the interval (0-
t]. Further, since in a reliability model the system down state is

an absorbing state, the MTTF can be calculated as the mean

time to absorption in the corresponding CTMC model [1,2,12].

The reliability model for the Linux operating system used in

the IBM is shown in Figure 10. The repair transition from state

Figure 10. CTMC reliability model of Linux OS

RP to state UP and the transition from state DW are removed,

that is, the down state reached from the UP state, is made

absorbing.

 In this case, the model is simple enough so that a closed-form

solution can be obtained by hand (or using Mathematica) by

setting up and solving the underlying Kolmogorov differential

equations. Alternatively, a numerical solution of the underlying

equations can be obtained using SHARPE. The SHARPE

textual input file for the reliability model of Figure 10 is shown

in Figure 11. Note that in this case, since the CTMC is not

irreducible, an initial probability vector must be specified.

Figure 11. SHARPE Input file for the CTMC of Figure 9

The system reliability at time t is defined in this case as 𝑅(𝑡) =
𝜋𝑈𝑃(𝑡) and is computed from t=0 to t=10000 in steps of 2000.
As noted earlier, the MTTF is defined as the mean time to

absorption and is computed using the SHARPE command

expr mean(LinuxOS). With the assigned numerical values

the result is MTTF=40012 hr.

The CTMC of a reliability model can be, but need not be,

acyclic, as in the case of Figure 10. If there is no component

level repair (recovery) then the CTMC will be acyclic but if

there is component level repair (but no repair after system

failure) then the CTMC will have cycles. However, it will one

or more absorbing states. System down states will be absorbing

states.

 Reliability modeling techniques have wide applications in

different technological fields and have been proposed to

provide new frontiers in predicting health care outcomes. With

the rise in quantifiable approaches to health care, lessons from

reliability modeling may well provide new ways of improving

patient healthcare. Describing the development of conditions

leading to organ system failure provides motivation for

quantifying disease progression. As an example, a simple

model for progressive kidney diseases leading to renal failure is

reported in Figure 12 [14] where five discrete conditions are

enumerated in keeping with clinical classification of kidney

function:

 Trivedi & Bobbio: page 5

Figure 12. Markov model of renal disease progression [14]

1 Healthy: Normal renal function,

2 CKD: Chronic Kidney Disease without renal failure,

3 ESRD: End-Stage Renal Disease

4 Transplant: patients who have received a transplant,

5 Deceased

 The parameter values, used in solving the model of Figure 12,

are reported in Table 4. These values are estimated for a 65-

year old Medicare patient, and are based on the latest available

statistics from United States Renal Data System (USRDS)

annual report [15].

Table 4 - Parameter estimates for a 65-year medicare patient

The model of Figure 12 is solved for measures such as survival

rate and expected cost incurred by a patient in a one-year

interval [14].

 Efficient algorithms are available for solving Markov chains

with several million states [16,17,18], both in steady-state and

in transient regime. Furthermore, measures of interest such as

reliability, availability, performability, survivability etc. can be

computed by means of reward rate assignments to the states of

the CTMC [1,12]. Derivatives (sensitivity functions) of the

measures of interest with respect to input parameters can also

be computed to help detect bottlenecks [19,20,21].

Nevertheless, the generation, storage and solution of real-life-

system Markov models still poses challenges. Higher level

formalisms such as those based on stochastic Petri nets and

their variants [22,4,23] have been used to automate the

generation, storage and the solution of large state spaces [24].

 An example of the use stochastic reward net to model the

availability of an Infrastructure-as-a-Service (IaaS) cloud is

shown in Figure 13 [25]. To reduce power usage costs, physical

machines (PMs) are divided into three pools: Hot pool (high

performance and high power usage), Warm pool (medium

performance and medium power usage) and Cold pool (lowest

performance and lowest power usage). PMs may fail and get

repaired. A minimum number of operational hot PMs is

required for the system to function but PMs in other pools may

be temporarily assigned to the hot pool in order to maintain

system operation. Upon repair, PMs migrate back to their

original pool. Migration creates dependence among the pools.

Figure 13. SRN availability model of IaaS Cloud

 A monolithic CTMC is too large to construct by hand. We use

a high-level formalism of stochastic Petri net known as

Stochastic Reward Net (SRN) [23,24]. An SRN model can be

automatically converted into an underlying Markov (reward)

model that is solved numerically for the measures of interest

such as expected downtime, steady-state availability,

reliability, sensitivities of these measures. In Figure 13, place

𝑃ℎ initially contains 𝑛ℎ PMs of the hot pool, 𝑃𝑤 contains 𝑛𝑤

PMs of the warm pool and 𝑃𝑐 contains 𝑛𝑐 PMs of the cold pool.

Assuming the number of PMs in each pool is identical and

equal to n, the number of states for the monolithic model of

Figure 13, is reported in the second column of Table 5. From

this table, it is clear that this approach based merely on SRN,

that we call largeness tolerance, soon reaches its limits as the

time needed for the generation and storage of the state space

becomes prohibitively large for real systems.

4. HIERARCHY & FIXED-POINT ITERATION

 In order to avoid large models as is the case in a monolithic

Markov (or generally state space) model, we advocate the use

of multi-level models in which the modeling power of state

space models and efficiency of non-state-space models are

combined together (Figure 14).

Figure 14. Analytic Modeling Taxonomy

 Trivedi & Bobbio: page 6

 Since a single monolithic model is never generated and stored

in this approach, this is largeness avoidance in contrast with the

use of largeness tolerance (recall SRN and related modeling

paradigms) wherein the underlying large model is generated

and stored. In multi-level modeling each of the model is solved

and results are conveyed to other relevant models to use as

their input parameters. This transmission of results of one sub-

model as input parameters to other sub-models is depicted as a

graph that has been called an import graph.

 Consider for instance, the availability model of the SUN

Microsystem whose top-level RBD availability model was

shown in Figure 4. Each block of the RBD of Figure 4 is a

complex sub-system that was modeled separately using the

appropriate formalism in order to compute the block steady-

state availability. In the present case, the subsystems were

modeled as Markov chains to cater for dependence within each

subsystem. The block availability is then rolled up to the higher

level RBD model to compute the system steady state

availability. The import graph for this model is shown in

Figure 15.

Figure 15. Import graph for the High Availability Platform

from Sun Microsystems [6]

The import graph in this case is acyclic. We can then carry out

a topological sort of the graph resulting in a linear order

specifying the order in which the sub-models are to be solved

and the result rolled up to the hierarchy.

 As the next example we return to the IaaS cloud availability

model and improve its scalability. The monolithic SRN model

of Figure 13 is decomposed into three sub-models to describe

separately the behavior of three pools [25] while taking into

account their mutual dependencies by means parameter

passing. The three sub-models are shown in Figure 16. Its

import graph is shown in Figure 17 indicating the input

parameters and output measures that are exchanged among sub-

models to obtain the overall model solution. Import graphs

such as the one of Figure 17 are not acyclic and hence the

solution to the overall problem can be set up as a fixed-point

problem. Such problems can be solved iteratively by successive

substitution with some initial starting point.

Figure 16. Decomposed SRN Availability model of IaaS Cloud

 Many mathematical issues arise such as the existence of the

fixed point, the uniqueness of the fixed-point, the rate of

convergence, accuracy and scalability. Except for the existence

of the fixed-point [26], all other issues are open for

investigation. Nevertheless, the method has been successfully

utilized on many real problems [1].

Figure 17. Import graph describing sub-model interactions

Table 5 shows the effect of the decomposition method (which

is also known as interacting sub-models method), comparing

the number of states of the monolithic model (column 2) with

the number of states of the interacting sub-models (column 3).

Table 5 – Comparison of monolithic vs decomposed model

There are many more examples of this type of multi-level

models in [1,2,13, 27,28,29,30,31].

 Trivedi & Bobbio: page 7

5. RELAXING THE EXPONENTIAL ASSUMPTION

 One standard complain about the use of homogeneous

Markov chains is the ubiquitous assumption of all event times

being exponentially distributed. There are several known

paradigms that can remove this assumption: non-homogeneous

Markov chains, semi Markov and Markov regenerative

process, and the use of phase-type expansions. All these

techniques have been used and many examples are illustrated

in [1].

 Nevertheless, there is additional complexity in using non-

exponential techniques in practice, partly because the analytical

solution is more complex but also because additional

information about the non-exponential distributions that is then

needed is often hard to come by.

A flowchart comparing the modelling power of the different

state space model-types is given in Figure 18 [1].

Figure 18 - Flow chart comparing the modeling power of the

different state space model types [1].

6. CONCLUSIONS

 We have tried to provide an overview of known modeling

techniques for the reliability and availability of complex

systems. We believe that techniques and tools do exist to capture

the behavior of current-day systems of moderate complexity.

Nevertheless, higher and higher complexity is being designed

into systems and hence the techniques must continue to evolve.

Together with the largeness problem, the need for higher fidelity

will require increasing use of non-exponential distributions, the

need to properly combine performance, power and other

measures of system effectiveness together with failure and

recovery. Parameterization and validation of the models need to

be further emphasized and aided. Tighter connection between

data-driven and model-driven methods on the one hand, and,

combining simulative solution with analytic-numeric solution

on the other hand is desired. Validated models need to be

maintained throughout the life of a system so that they can be

used for tuning at operational time as well. Uncertainty in model

parameters, so-called epistemic uncertainty, as opposed to

aleatory uncertainty already incorporated in the models

discussed here, needs to be accounted for in a high-fidelity

assessment of reliability and availability [32]. For further

discussion on these topics, we encourage the tutorial attendees

to consult our book [1].

Figure 19 – Chapters overview of the book

 In Figure 19 we provide the chapters overview of the book [1],

and in Figure 20 a classification of the considered modeling

formalisms. We are currently preparing a solution manual and

set of power point slides as education material to accompany the

book.

7. REFERENCES

1. K. Trivedi and A. Bobbio, Reliability and Availability

Engineering, Cambridge University Press, 2017

2. R. Sahner, K. Trivedi, and A. Puliafito, Performance and

Reliability Analysis of Computer Systems: An Example-

based Approach Using the SHARPE Software Package.

Kluwer Academic Publishers, 1996.

3. K. Trivedi and R. A. Sahner, “SHARPE at the Age of

Twenty Two,” ACM Performance Evaluation Review, vol.

36, issue 4, March 2009.

4. G. Ciardo, J. Muppala, and K. S. Trivedi, “SPNP: Stochastic

petri net package,” in Proc. Third Int. Workshop on Petri

Nets and Performance Models, 1989, pp. 142–151.

5. C. Hirel, B. Tuffin, and K. S. Trivedi, “SPNP: Stochastic

Petri Nets. Version 6,” in International Conference on

Computer Performance Evaluation: Modelling Techniques

and Tools (TOOLS 2000), B. Haverkort, H. Bohnenkamp

(eds.), LNCS 1786, Springer Verlag, 2000, pp. 354 – 357.

6. K. Trivedi, R. Vasireddy, D. Trindade, S. Nathan, and R.

Castro, “Modeling high availability systems,” in Proc. IEEE

Pacific Rim International Symposium on Dependable

Computing (PRDC), 2006.

 Trivedi & Bobbio: page 8

7. S. Sebastio, K. Trivedi, D.Wang, X. Yin, Fast computation

of bounds for two-terminal network reliability, European

Journal of Operational Research, vol. 238, no. 3, pp. 810–

823, 2014.

8. M. Malhotra and K. Trivedi, “Power-hierarchy among

dependability model types,” IEEE Transactions on

Reliability, vol. R-43, pp. 493–502, 1994.

9. X. Zang, D. Wang, H. Sun, and K. Trivedi, “A BDD-based

algorithm for analysis of multistate systems with multistate

components,” IEEE Transactions on Computers, vol. 52,

no. 12, pp. 1608–1618, 2003.

10. X. Zang, H. Sun, and K. Trivedi, “A BDD-based algorithm

for reliability analysis of phased mission systems”, IEEE

Trans. on Reliability, vol. 48, no. 1, pp. 50 – 60, March

1999.

11. G. Merle, J. Roussel, J. Lesage, and A. Bobbio,

“Probabilistic algebraic analysis of fault trees with priority

dynamic gates and repeated events,” IEEE Transactions on

Reliability, vol. 59, no. 1, pp. 250–261, 2010.

12. K. Trivedi, Probability & Statistics with Reliability,

Queueing & Computer Science applications, 2nd ed. John

Wiley & Sons, 2001.

13. K. S. Trivedi, D. Wang, J. Hunt, A. Rindos, W. E. Smith,

and B. Vashaw, “Availability modeling of SIP protocol on

IBM © Websphere ©,” in Proc. Pacific Rim International

Symposium on Dependable Computing (PRDC), 2008, pp.

323–330.

14. R. Fricks, A. Bobbio, and K. Trivedi, “Reliability models of

chronic kidney disease,” in Proceedings IEEE Annual

Reliability and Maintainability Symposium, 2016, pp. 1–6.

15. United States Renal Data System, “2014 annual data report:

An overview of the epidemiology of kidney disease in the

United States,” National Institutes of Health - National

Institute of Diabetes and Digestive and Kidney Diseases,

Tech. Rep., 2014.

16. W. Stewart, Introduction to the Numerical Solution of

Markov Chains. Princeton University Press, 1994.

17. A. Reibman and K. Trivedi, “Numerical transient analysis

of Markov models,” Computers and Operations Research,

vol. 15, pp. 19–36, 1988.

18. A. Reibman, R. Smith, and K. Trivedi, “Markov and

Markov reward model transient analysis: an overview of

numerical approaches,” European Journal of Operational

Research, vol. 40, pp. 257–267, 1989.

19. A. Bobbio and A. Premoli, “Fast algorithm for

unavailability and sensitivity analysis of series-parallel

systems,” IEEE Transactions on Reliability, vol. R-31, pp.

359–361, 1982.

20. J. Blake, A. Reibman, and K. Trivedi, “Sensitivity analysis

of reliability and performability measures for

multiprocessor systems,” ACM SIGMETRICS Perform.

Eval. Rev., vol. 16, no. 1, pp. 177–186, May 1988.

21. R. Matos, P. Maciel, F. Machida, D. S. Kim, and K. Trivedi,

“Sensitivity analysis of server virtualized system

availability,” IEEE Transactions on Reliability, vol. 61, no.,

pp. 994–1006, Dec 2012.

22. A. Bobbio, “System modelling with Petri nets,” in System

Reliability Assessment, A. Colombo and A. de Bustamante,

Eds. Kluwer Academic P.G., 1990, pp. 103–143.

23. G. Ciardo, J. Muppala, and K. Trivedi, “On the solution of

GSPN reward models,” Performance Evaluation, vol. 12,

pp. 237–253, 1991.

24. G. Ciardo, A. Blakemore, P. F. Chimento, J. K. Muppala,

and K. Trivedi, “Automated generation and analysis of

Markov reward models using stochastic reward nets,” in

Linear Algebra, Markov Chains, and Queueing Models,.

The IMA Vol in Mathematics and its Applications, C.

Meyer and R. Plemmons, Eds. Springer, 1993, vol. 48, pp.

145–191.

25. R. Ghosh, F. Longo, L. Frattini, S. Russo & K. Trivedi,

“Scalable Analytics for IaaS Cloud Availability”, IEEE

Trans. on Cloud Computing, 2014.

26. V. Mainkar and K. Trivedi, “Sufficient Conditions for

Existence of a Fixed Point in Stochastic Reward Net-Based

Iterative Models,” IEEE Trans. Software Eng., vol. 22, no.

9, pp. 640-653, 1996.

27. H. Sukhwani, A. Bobbio, and K. Trivedi, “Largeness

avoidance in availability modeling using hierarchical and

fixed-point iterative techniques,” International Journal of

Performability Engineering, vol. 11, no. 4, pp. 305–319,

2015.

28. R. Ghosh, F. Longo, V. Naik, and K. Trivedi, “Modeling

and performance analysis of large scale IaaS Clouds,”

Future Generation Comp. Systems, vol. 29, no. 5, pp. 1216-

1234, 2013.

29. R. Ghosh, F. Longo, R. Xia, V. Naik, and K. Trivedi,

“Stochastic Model Driven Capacity Planning for an

Infrastructure-as-a-Service Cloud,” IEEE Trans. Services

Computing, vol. 7, no. 4, pp. 667-680, 2014.

30. K. Trivedi, D. Wang, and J. Hunt, “Computing the Number

of Calls Dropped Due to Failures,” ISSRE, pp. 11-20, 2010.

31. S. Mondal, X. Yin, J. Muppala, J. Alonso Lopez, and K.

Trivedi, “Defects per Million Computation in Service-

Oriented Environments,” IEEE Trans. Services Computing,

vol. 8, no. 1, pp. 32-46, 2015.

32. K. Mishra and K. Trivedi, “Closed-form approach for

epistemic uncertainty propagation in analytic models,”

Stochastic Reliability and Maintenance Modeling, vol. 9.

Springer Series in Reliability Engineering, 2013, pp. 315–

332.

 Trivedi & Bobbio: page 9

